Mirhossein Mousavi Karimi, Shahram Rahimi, Mohammad Nagahisarchoghaei, Chaomin Luo
{"title":"A Multidimensional Game Theory–Based Group Decision Model for Predictive Analytics","authors":"Mirhossein Mousavi Karimi, Shahram Rahimi, Mohammad Nagahisarchoghaei, Chaomin Luo","doi":"10.1155/2022/5089021","DOIUrl":null,"url":null,"abstract":"<div>\n <p>An N-dimensional game theory–based model for multi-actor predictive analytics is presented in this article. The proposed model expands our previous work on two-dimensional group decision model for predictive analytics. The one-dimensional models are used for the problems where actors are interacting in a single issue space only. This is less than an ideal assumption since; in most cases, players’ strategies may depend on the dynamics of multiple issues when dealing with other players. In this work, the one-dimensional model is expanded to N-dimensional model by considering different positions, and separate salience values, across different axes for the players. The model predicts an outcome for a given problem by taking into account stakeholder’s positions in different dimensions and their conflicting perspectives. To illustrate the capability of the proposed model, three case studies have been presented.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/5089021","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/5089021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An N-dimensional game theory–based model for multi-actor predictive analytics is presented in this article. The proposed model expands our previous work on two-dimensional group decision model for predictive analytics. The one-dimensional models are used for the problems where actors are interacting in a single issue space only. This is less than an ideal assumption since; in most cases, players’ strategies may depend on the dynamics of multiple issues when dealing with other players. In this work, the one-dimensional model is expanded to N-dimensional model by considering different positions, and separate salience values, across different axes for the players. The model predicts an outcome for a given problem by taking into account stakeholder’s positions in different dimensions and their conflicting perspectives. To illustrate the capability of the proposed model, three case studies have been presented.