Design, simulation and experiment of PSO-FOPID controller for height position control of a scissor mechanism platform

IF 1.2 Q3 ENGINEERING, MECHANICAL
N. Norsahperi, S. Ahmad, S. Toha, M. Mutalib
{"title":"Design, simulation and experiment of PSO-FOPID controller for height position control of a scissor mechanism platform","authors":"N. Norsahperi, S. Ahmad, S. Toha, M. Mutalib","doi":"10.5937/fme2201046n","DOIUrl":null,"url":null,"abstract":"This paper proposes the PSO-FOPID controller, which is a Fractional Order Proportional-Integral-Derivative (FOPID) controller tuned using particle swarm optimization with spreading factor algorithm for height position control of a scissor mechanism platform. The tuning process of five control gains in the FOPID controller is technically challenging to achieve high position accuracy. In this study, this problem is addressed through the offline tuning method by using particle swarm optimization with the spreading factor algorithm to reduce the complexity in tuning the control gains. From the experimental study, it is found that the proposed controller can eliminate the steady-state error under the two input references with approximately 1.5% and 0.9% reductions of the overshoot and undershoot in the height position response as compared to its promising performances in simulations. It is envisaged that the PSOFOPID controller can be useful in designing effective height position control of a non-linear platform.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2201046n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes the PSO-FOPID controller, which is a Fractional Order Proportional-Integral-Derivative (FOPID) controller tuned using particle swarm optimization with spreading factor algorithm for height position control of a scissor mechanism platform. The tuning process of five control gains in the FOPID controller is technically challenging to achieve high position accuracy. In this study, this problem is addressed through the offline tuning method by using particle swarm optimization with the spreading factor algorithm to reduce the complexity in tuning the control gains. From the experimental study, it is found that the proposed controller can eliminate the steady-state error under the two input references with approximately 1.5% and 0.9% reductions of the overshoot and undershoot in the height position response as compared to its promising performances in simulations. It is envisaged that the PSOFOPID controller can be useful in designing effective height position control of a non-linear platform.
剪刀机构平台高度位置控制的PSO-FOPID控制器的设计、仿真与实验
提出了一种基于粒子群扩展因子算法的分数阶比例积分导数(FOPID)控制器PSO-FOPID,用于剪刀机构平台的高度位置控制。FOPID控制器中5个控制增益的整定过程是实现高位置精度的技术挑战。本研究通过粒子群优化和扩展因子算法的离线调谐方法来解决这一问题,以降低调节控制增益的复杂性。通过实验研究发现,与仿真结果相比,所提出的控制器可以消除两种输入参考下的稳态误差,并且高度位置响应的超调和欠调分别减少约1.5%和0.9%。设想PSOFOPID控制器可用于设计非线性平台的有效高度位置控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信