A Fast Dynamic Assignment Algorithm for Solving Resource Allocation Problems

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ivanda Zevi Amalia, Ahmad Saikhu, Rully Soelaiman
{"title":"A Fast Dynamic Assignment Algorithm for Solving Resource Allocation Problems","authors":"Ivanda Zevi Amalia, Ahmad Saikhu, Rully Soelaiman","doi":"10.15575/JOIN.V6I1.692","DOIUrl":null,"url":null,"abstract":"The assignment problem is one of the fundamental problems in the field of combinatorial optimization. The Hungarian algorithm can be developed to solve various assignment problems according to each criterion. The assignment problem that is solved in this paper is a dynamic assignment to find the maximum weight on the resource allocation problems. The dynamic characteristic lies in the weight change that can occur after the optimal solution is obtained. The Hungarian algorithm can be used directly, but the initialization process must be done from the beginning every time a change occurs. The solution becomes ineffective because it takes up a lot of time and memory. This paper proposed a fast dynamic assignment algorithm based on the Hungarian algorithm. The proposed algorithm is able to obtain an optimal solution without performing the initialization process from the beginning. Based on the test results, the proposed algorithm has an average time of 0.146 s and an average memory of 4.62 M. While the Hungarian algorithm has an average time of 2.806 s and an average memory of 4.65 M. The fast dynamic assignment algorithm is influenced linearly by the number of change operations and quadratically by the number of vertices.","PeriodicalId":53990,"journal":{"name":"JOURNAL OF INTERCONNECTION NETWORKS","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INTERCONNECTION NETWORKS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/JOIN.V6I1.692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

The assignment problem is one of the fundamental problems in the field of combinatorial optimization. The Hungarian algorithm can be developed to solve various assignment problems according to each criterion. The assignment problem that is solved in this paper is a dynamic assignment to find the maximum weight on the resource allocation problems. The dynamic characteristic lies in the weight change that can occur after the optimal solution is obtained. The Hungarian algorithm can be used directly, but the initialization process must be done from the beginning every time a change occurs. The solution becomes ineffective because it takes up a lot of time and memory. This paper proposed a fast dynamic assignment algorithm based on the Hungarian algorithm. The proposed algorithm is able to obtain an optimal solution without performing the initialization process from the beginning. Based on the test results, the proposed algorithm has an average time of 0.146 s and an average memory of 4.62 M. While the Hungarian algorithm has an average time of 2.806 s and an average memory of 4.65 M. The fast dynamic assignment algorithm is influenced linearly by the number of change operations and quadratically by the number of vertices.
一种求解资源分配问题的快速动态分配算法
分配问题是组合优化领域的基本问题之一。匈牙利算法可以根据每个准则来求解各种分配问题。本文所要解决的分配问题是一个寻找资源分配问题中最大权值的动态分配问题。动态特性在于得到最优解后权值的变化。匈牙利算法可以直接使用,但是每次发生更改时都必须从头开始进行初始化过程。解决方案变得无效,因为它占用了大量的时间和内存。提出了一种基于匈牙利算法的快速动态分配算法。该算法无需从头执行初始化过程即可获得最优解。测试结果表明,该算法的平均时间为0.146 s,平均内存为4.62 m,而匈牙利算法的平均时间为2.806 s,平均内存为4.65 m。快速动态分配算法受更改操作次数的线性影响,受顶点数量的二次影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOURNAL OF INTERCONNECTION NETWORKS
JOURNAL OF INTERCONNECTION NETWORKS COMPUTER SCIENCE, THEORY & METHODS-
自引率
14.30%
发文量
121
期刊介绍: The Journal of Interconnection Networks (JOIN) is an international scientific journal dedicated to advancing the state-of-the-art of interconnection networks. The journal addresses all aspects of interconnection networks including their theory, analysis, design, implementation and application, and corresponding issues of communication, computing and function arising from (or applied to) a variety of multifaceted networks. Interconnection problems occur at different levels in the hardware and software design of communicating entities in integrated circuits, multiprocessors, multicomputers, and communication networks as diverse as telephone systems, cable network systems, computer networks, mobile communication networks, satellite network systems, the Internet and biological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信