Wuliang Huang, Xinlong Jiang, Chenlong Gao, Teng Zhang, Yunbing Xing, Yiqiang Chen, Yi Zheng, Jie Li
{"title":"A Graph-Based Information Fusion Approach for ADHD Subtype Classification","authors":"Wuliang Huang, Xinlong Jiang, Chenlong Gao, Teng Zhang, Yunbing Xing, Yiqiang Chen, Yi Zheng, Jie Li","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00112","DOIUrl":null,"url":null,"abstract":"Attention deficit hyperactivity disorder (ADHD) is a common childhood mental disorder that encompasses three subtypes. Classifying each subtype has practical significance. However, the gold standard for subtype diagnosis depends on face-to-face consultation with psychiatrists, which is limited by medical resources. This paper proposes a graph-based multimodal fusion approach to classify each subtype objectively, alleviating the pressure on psychiatrists. The proposed method leverages heterogeneous signals, including motion and speech, which are significant indicators of ADHD. We construct a personal graph where each child is a vertex, and the similarity of their personal information measures edges. Since the associations between subjects modeled by the personal graph provide rich prior knowledge, we regard the problem of subtype classification as predicting the labels of vertices on a graph. A novel graph neural network model is proposed to enable information passing between children, fusing motion and speech features under the guidance of the personal graph. We design a reading scenario and collect a multimodal dataset containing 56 children with ADHD and 50 typically developing children. Results of ADHD subtype classification demonstrate the practical value of the proposed approach. We also perform ablation studies to verify the validity of the proposed method.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":"14 1","pages":"714-723"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common childhood mental disorder that encompasses three subtypes. Classifying each subtype has practical significance. However, the gold standard for subtype diagnosis depends on face-to-face consultation with psychiatrists, which is limited by medical resources. This paper proposes a graph-based multimodal fusion approach to classify each subtype objectively, alleviating the pressure on psychiatrists. The proposed method leverages heterogeneous signals, including motion and speech, which are significant indicators of ADHD. We construct a personal graph where each child is a vertex, and the similarity of their personal information measures edges. Since the associations between subjects modeled by the personal graph provide rich prior knowledge, we regard the problem of subtype classification as predicting the labels of vertices on a graph. A novel graph neural network model is proposed to enable information passing between children, fusing motion and speech features under the guidance of the personal graph. We design a reading scenario and collect a multimodal dataset containing 56 children with ADHD and 50 typically developing children. Results of ADHD subtype classification demonstrate the practical value of the proposed approach. We also perform ablation studies to verify the validity of the proposed method.
期刊介绍:
The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.