{"title":"Recurrent Neural Network Deep Learning Techniques for Brain Tumor Segmentation and Classification of Magnetic Resonance Imaging Images","authors":"Meenal Thayumanavan, Asokan Ramasamy","doi":"10.1166/jmihi.2022.3943","DOIUrl":null,"url":null,"abstract":"Brain Tumour is a one of the most threatful disease in the world. It reduces the life span of human beings. Computer vision is advantageous for human health research because it eliminates the need for human judgement to get accurate data. The most reliable and secure imaging techniques\n for magnetic resonance imaging are CT scans, X-rays, and MRI scans (MRI). MRI can locate tiny objects. The focus of our paper will be the many techniques for detecting brain cancer using brain MRI. Early detection of tumour and diagnosis is might essential to radiologist to initiate better\n treatment. MRI is a competent and speedy method of examining a brain tumour. Resonance in Magnetic Fields Imaging technology is a non-invasive technique that aids in the segmentation of brain tumour images. Deep learning algorithm delivers good outcomes in terms of reducing time consumption\n and precise tumour diagnosis (solution). This research proposed that a Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) Supervised Deep Learning model be used to automatically find and split brain tumours. The RNN Model outperforms the CNN Model by 98.91 percentage. These\n models categorize brain images as normal or pathological, and their performance was evaluated.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Brain Tumour is a one of the most threatful disease in the world. It reduces the life span of human beings. Computer vision is advantageous for human health research because it eliminates the need for human judgement to get accurate data. The most reliable and secure imaging techniques
for magnetic resonance imaging are CT scans, X-rays, and MRI scans (MRI). MRI can locate tiny objects. The focus of our paper will be the many techniques for detecting brain cancer using brain MRI. Early detection of tumour and diagnosis is might essential to radiologist to initiate better
treatment. MRI is a competent and speedy method of examining a brain tumour. Resonance in Magnetic Fields Imaging technology is a non-invasive technique that aids in the segmentation of brain tumour images. Deep learning algorithm delivers good outcomes in terms of reducing time consumption
and precise tumour diagnosis (solution). This research proposed that a Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) Supervised Deep Learning model be used to automatically find and split brain tumours. The RNN Model outperforms the CNN Model by 98.91 percentage. These
models categorize brain images as normal or pathological, and their performance was evaluated.
期刊介绍:
Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.