Approximate method of variational Bayesian matrix factorization with sparse prior

Ryota Kawasumi, K. Takeda
{"title":"Approximate method of variational Bayesian matrix factorization with sparse prior","authors":"Ryota Kawasumi, K. Takeda","doi":"10.1109/MLSP.2017.8168156","DOIUrl":null,"url":null,"abstract":"We study the problem of matrix factorization by variational Bayes method, under the assumption that observed matrix is the product of low-rank dense and sparse matrices with additional noise. Under assumption of Laplace distribution for sparse matrix prior, we analytically derive an approximate solution of matrix factorization by minimizing Kullback-Leibler divergence between posterior and trial function. By evaluating our solution numerically, we also discuss accuracy of matrix factorization of our analytical solution.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"18 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of matrix factorization by variational Bayes method, under the assumption that observed matrix is the product of low-rank dense and sparse matrices with additional noise. Under assumption of Laplace distribution for sparse matrix prior, we analytically derive an approximate solution of matrix factorization by minimizing Kullback-Leibler divergence between posterior and trial function. By evaluating our solution numerically, we also discuss accuracy of matrix factorization of our analytical solution.
稀疏先验变分贝叶斯矩阵分解的近似方法
本文研究了变分贝叶斯方法的矩阵分解问题,假设观测矩阵是低秩密集矩阵和稀疏矩阵的乘积,并附加了噪声。在稀疏矩阵先验的拉普拉斯分布假设下,通过最小化后验函数与试验函数之间的Kullback-Leibler散度,解析导出了矩阵分解的近似解。通过数值计算,讨论了解析解的矩阵分解精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信