K. Dreja, M. Voldstedlund, J. Vinten, J. Tranum-Jensen, P. Hellstrand, K. Swärd
{"title":"Cholesterol Depletion Disrupts Caveolae and Differentially Impairs Agonist-Induced Arterial Contraction","authors":"K. Dreja, M. Voldstedlund, J. Vinten, J. Tranum-Jensen, P. Hellstrand, K. Swärd","doi":"10.1161/01.ATV.0000023438.32585.A1","DOIUrl":null,"url":null,"abstract":"Objective—This study assessed the role of cholesterol-rich membrane regions, including caveolae, in the regulation of arterial contractility. Methods and Results—Rat tail artery devoid of endothelium was treated with the cholesterol acceptor methyl-&bgr;-cyclodextrin, and the effects on force and Ca2+ handling were evaluated. In cholesterol-depleted preparations, the force responses to &agr;1-adrenergic receptors, membrane depolarization, inhibition of myosin light chain phosphatase, and activation of G proteins with a mixture of 20 mmol/L NaF and 60 &mgr;mol/L AlCl3 were unaffected. In contrast, responses to 5-hydroxytryptamine (5-HT), vasopressin, and endothelin were reduced by >50%. The rise in global intracellular free Ca2+ concentration in response to 5-HT was attenuated, as was the generation of Ca2+ waves at the cellular level. By electron microscopy, cholesterol depletion was found to disrupt caveolae. The 5-HT response could be restored by exogenous cholesterol, which also restored caveolae. Western blots showed that the levels of 5-HT2A receptor and of caveolin-1 were unaffected by cholesterol extraction. Sucrose gradient centrifugation showed enrichment of 5-HT2A receptors, but not &agr;1-adrenergic receptors, in the caveolin-1–containing fractions, suggesting localization of the former to caveolae. Conclusions—These results show that a subset of signaling pathways that regulate smooth muscle contraction depends specifically on cholesterol. Furthermore, the cholesterol-dependent step in serotonergic signaling occurs early in the pathway and depends on the integrity of caveolae.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000023438.32585.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182
Abstract
Objective—This study assessed the role of cholesterol-rich membrane regions, including caveolae, in the regulation of arterial contractility. Methods and Results—Rat tail artery devoid of endothelium was treated with the cholesterol acceptor methyl-&bgr;-cyclodextrin, and the effects on force and Ca2+ handling were evaluated. In cholesterol-depleted preparations, the force responses to &agr;1-adrenergic receptors, membrane depolarization, inhibition of myosin light chain phosphatase, and activation of G proteins with a mixture of 20 mmol/L NaF and 60 &mgr;mol/L AlCl3 were unaffected. In contrast, responses to 5-hydroxytryptamine (5-HT), vasopressin, and endothelin were reduced by >50%. The rise in global intracellular free Ca2+ concentration in response to 5-HT was attenuated, as was the generation of Ca2+ waves at the cellular level. By electron microscopy, cholesterol depletion was found to disrupt caveolae. The 5-HT response could be restored by exogenous cholesterol, which also restored caveolae. Western blots showed that the levels of 5-HT2A receptor and of caveolin-1 were unaffected by cholesterol extraction. Sucrose gradient centrifugation showed enrichment of 5-HT2A receptors, but not &agr;1-adrenergic receptors, in the caveolin-1–containing fractions, suggesting localization of the former to caveolae. Conclusions—These results show that a subset of signaling pathways that regulate smooth muscle contraction depends specifically on cholesterol. Furthermore, the cholesterol-dependent step in serotonergic signaling occurs early in the pathway and depends on the integrity of caveolae.