Monotone limits in linear programming problems

M. Yamasaki
{"title":"Monotone limits in linear programming problems","authors":"M. Yamasaki","doi":"10.32917/HMJ/1206138223","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the behavior of values of linear programming problems under some monotone variations of objective functions and constraints. More precisely, let X and Y be real linear spaces paired under the bilinear functional ((,))i, and let Z and W be real linear spaces paired under the bilinear functional ( ( , ) ) 2 A (linear) program for these paired spaces is a quintuple (A, P, Q, j 0 ? z0). In this quintuple, A is a linear transformation from X into Z, P is a convex cone in X, Q is a convex cone in Z, γ0 is an element of Y and z0 is an element of Z. The set S of feasible solutions for the program and the value M of the program are defined by","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"2014 1","pages":"249-258"},"PeriodicalIF":0.0000,"publicationDate":"1970-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of this paper is to investigate the behavior of values of linear programming problems under some monotone variations of objective functions and constraints. More precisely, let X and Y be real linear spaces paired under the bilinear functional ((,))i, and let Z and W be real linear spaces paired under the bilinear functional ( ( , ) ) 2 A (linear) program for these paired spaces is a quintuple (A, P, Q, j 0 ? z0). In this quintuple, A is a linear transformation from X into Z, P is a convex cone in X, Q is a convex cone in Z, γ0 is an element of Y and z0 is an element of Z. The set S of feasible solutions for the program and the value M of the program are defined by
线性规划问题中的单调极限
本文的目的是研究在目标函数和约束的单调变化下线性规划问题的值的行为。更准确地说,设X和Y是在双线性泛函((,))i下配对的实数线性空间,设Z和W是在双线性泛函((,))2下配对的实数线性空间。z0)。在这个五元组中,A是X到Z的线性变换,P是X中的凸锥,Q是Z中的凸锥,γ0是Y中的一个元素,z0是Z中的一个元素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信