SAFE: EFFICIENT DDOS ATTACK DEFENSE WITH ELASTIC TRAFFIC FLOW INSPECTION IN SDN-BASED DATA CENTERS

Tri Gia Nguyen, Hai Hoang Nguyen, Trung V. Phan
{"title":"SAFE: EFFICIENT DDOS ATTACK DEFENSE WITH ELASTIC TRAFFIC FLOW INSPECTION IN SDN-BASED DATA CENTERS","authors":"Tri Gia Nguyen, Hai Hoang Nguyen, Trung V. Phan","doi":"10.15625/1813-9663/16629","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient distributed denial-of-Service (DDoS) Attack deFEnse solution, namely SAFE, which utilizes an elastic traffic flow inspection mechanism, for Software-Defined Networking (SDN) based data centers. In particular, we first examine a leaf-spine SDN-based data center network, which is highly vulnerable to volumetric DDoS attacks. Next, we develop a rank-based anomaly detection algorithm to recognize anomalies in the amount of incoming traffic. Then, for the traffic flow inspection, we introduce a component called DFI (Deep Flow Inspection) running an Open vSwitch (OvS) that can be dynamically initiated (as a virtual machine) on-demand to collect traffic flow statistics. By utilizing deep reinforcement learning-based traffic monitoring from our previous study, the DFIs can be protected from the flow-table overflow problem while providing more detailed traffic flow information. Afterward, a machine learning-based attack detector analyzes the gathered flow rule statistics to identify the attack, and appropriate policies are implemented if an attack is recognized. The experiment results show that the SAFE can effectively defend against volumetric DDoS attacks while assuring a reliable Quality-of-Service level for benign traffic flows in SDN-based data center networks. Specifically, for TCP SYN and UDP floods, the SAFE attack detection performance is improved by approximately 40% and 30%, respectively, compared to the existing SATA solution. Furthermore, the attack mitigation performance, the ratio of dropped malicious packets obtained by the SAFE is superior by approximately 48% (for TCP SYN flood) and 52% (for UDP flood) to the SATA.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/16629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an efficient distributed denial-of-Service (DDoS) Attack deFEnse solution, namely SAFE, which utilizes an elastic traffic flow inspection mechanism, for Software-Defined Networking (SDN) based data centers. In particular, we first examine a leaf-spine SDN-based data center network, which is highly vulnerable to volumetric DDoS attacks. Next, we develop a rank-based anomaly detection algorithm to recognize anomalies in the amount of incoming traffic. Then, for the traffic flow inspection, we introduce a component called DFI (Deep Flow Inspection) running an Open vSwitch (OvS) that can be dynamically initiated (as a virtual machine) on-demand to collect traffic flow statistics. By utilizing deep reinforcement learning-based traffic monitoring from our previous study, the DFIs can be protected from the flow-table overflow problem while providing more detailed traffic flow information. Afterward, a machine learning-based attack detector analyzes the gathered flow rule statistics to identify the attack, and appropriate policies are implemented if an attack is recognized. The experiment results show that the SAFE can effectively defend against volumetric DDoS attacks while assuring a reliable Quality-of-Service level for benign traffic flows in SDN-based data center networks. Specifically, for TCP SYN and UDP floods, the SAFE attack detection performance is improved by approximately 40% and 30%, respectively, compared to the existing SATA solution. Furthermore, the attack mitigation performance, the ratio of dropped malicious packets obtained by the SAFE is superior by approximately 48% (for TCP SYN flood) and 52% (for UDP flood) to the SATA.
安全:基于sdn的数据中心,通过弹性流量检测,有效防范ddos攻击
本文针对基于软件定义网络(SDN)的数据中心,提出了一种高效的分布式拒绝服务(DDoS)攻击防御方案,即SAFE,该方案利用弹性流量检测机制。特别地,我们首先检查了基于叶脊sdn的数据中心网络,它非常容易受到容量DDoS攻击。接下来,我们开发了一种基于秩的异常检测算法来识别传入流量中的异常。然后,对于流量检测,我们引入了一个名为DFI (Deep flow inspection)的组件,该组件运行一个Open vSwitch (OvS),可以按需动态启动(作为虚拟机)来收集流量统计数据。通过利用我们之前的研究中基于深度强化学习的交通监控,dfi可以避免流表溢出问题,同时提供更详细的交通流信息。然后,基于机器学习的攻击检测器分析收集到的流规则统计信息来识别攻击,如果识别出攻击,则实施相应的策略。实验结果表明,基于sdn的数据中心网络能够有效防御海量DDoS攻击,同时为良性流量提供可靠的服务质量水平。具体来说,对于TCP SYN flood和UDP flood,相对于现有的SATA解决方案,SAFE攻击检测性能分别提高了约40%和30%。此外,在攻击缓解性能上,SAFE获得的恶意数据包丢弃率(TCP SYN flood)比SATA高约48% (UDP flood), 52% (UDP flood)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信