An Alpha-Stable Approach to Modelling Highly Speculative Assets and Cryptocurrencies

Taurai Muvunza
{"title":"An Alpha-Stable Approach to Modelling Highly Speculative Assets and Cryptocurrencies","authors":"Taurai Muvunza","doi":"10.2139/ssrn.3505859","DOIUrl":null,"url":null,"abstract":"We investigate the behaviour of cryptocurrencies' return data. Using return data for bitcoin, ethereum and ripple which account for over 70% of the cyrptocurrency market, we demonstrate that α-stable distribution models highly speculative cryptocurrencies more robustly compared to other heavy tailed distributions that are used in financial econometrics. We find that the Maximum Likelihood Method proposed by DuMouchel (1971) produces estimates that fit the cryptocurrency return data much better than the quantile based approach of McCulloch (1986) and sample characteristic method by Koutrouvelis (1980). The empirical results show that the leptokurtic feature presented in cryptocurrency return data can be captured by an α-stable distribution. This papers covers predominant literature in cryptocurrencies and stable distributions.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3505859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We investigate the behaviour of cryptocurrencies' return data. Using return data for bitcoin, ethereum and ripple which account for over 70% of the cyrptocurrency market, we demonstrate that α-stable distribution models highly speculative cryptocurrencies more robustly compared to other heavy tailed distributions that are used in financial econometrics. We find that the Maximum Likelihood Method proposed by DuMouchel (1971) produces estimates that fit the cryptocurrency return data much better than the quantile based approach of McCulloch (1986) and sample characteristic method by Koutrouvelis (1980). The empirical results show that the leptokurtic feature presented in cryptocurrency return data can be captured by an α-stable distribution. This papers covers predominant literature in cryptocurrencies and stable distributions.
对高度投机资产和加密货币进行建模的阿尔法稳定方法
我们研究了加密货币返回数据的行为。利用占加密货币市场70%以上的比特币、以太坊和瑞波币的回报数据,我们证明了α-稳定分布模型与金融计量经济学中使用的其他重尾分布相比,高度投机的加密货币更加稳健。我们发现,DuMouchel(1971)提出的最大似然方法产生的估计比McCulloch(1986)的基于分位数的方法和Koutrouvelis(1980)的样本特征方法更适合加密货币回报数据。实证结果表明,加密货币收益数据呈现的细峰特征可以用α-稳定分布来描述。本文涵盖了加密货币和稳定发行版的主要文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信