{"title":"A novel ensemble classifier by combining sampling and genetic algorithm to combat multiclass imbalanced problems","authors":"Archana Purwar, S. Singh","doi":"10.1504/ijdats.2020.10026827","DOIUrl":null,"url":null,"abstract":"To handle datasets with imbalanced classes is an exigent problem in the area of machine learning and data mining. Though a lot of work has been done by many researchers in the literature for two-class imbalanced problems, the multiclass problems still need to be explored. In this paper, we propose sampling and genetic algorithm based ensemble classifier (SA-GABEC) to handle imbalanced classes. SA-GABEC tries to find the best subset of classifiers for a given sample that is precise in predictions and can create an acceptable diversity in features subspace. These subsets of classifiers are fused together to give better predictions as compared to a single classifier. Moreover, this paper also proposes modified SA-GABEC which performs the feature selection before applying sampling and outperforms SA-GABEC. The performance of the proposed classifiers is evaluated and compared with GAB-EPA, Adaboost and bagging using minority class recall and extended G-mean.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"1 1","pages":"30-42"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2020.10026827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
Abstract
To handle datasets with imbalanced classes is an exigent problem in the area of machine learning and data mining. Though a lot of work has been done by many researchers in the literature for two-class imbalanced problems, the multiclass problems still need to be explored. In this paper, we propose sampling and genetic algorithm based ensemble classifier (SA-GABEC) to handle imbalanced classes. SA-GABEC tries to find the best subset of classifiers for a given sample that is precise in predictions and can create an acceptable diversity in features subspace. These subsets of classifiers are fused together to give better predictions as compared to a single classifier. Moreover, this paper also proposes modified SA-GABEC which performs the feature selection before applying sampling and outperforms SA-GABEC. The performance of the proposed classifiers is evaluated and compared with GAB-EPA, Adaboost and bagging using minority class recall and extended G-mean.