The Examination of the Wien’s Displacement Constant with Simulation and Simple Numerical Approaches

Riana Aprilia, Marisa Alifaturrohmah, Gilang Purnama, S. Wahyuni
{"title":"The Examination of the Wien’s Displacement Constant with Simulation and Simple Numerical Approaches","authors":"Riana Aprilia, Marisa Alifaturrohmah, Gilang Purnama, S. Wahyuni","doi":"10.15294/physcomm.v6i2.39821","DOIUrl":null,"url":null,"abstract":"The purpose of this research  was to examine the value of the Wien’s constant using PhET Simulation virtual laboratory and simple numerical approach. The independent and dependent variable is blackbody temperature (T) and maximum wavelength (λ_max). In the use of a virtual laboratory, research is carried out by shifting the black body temperature feature so  the graph will display a spectral power density that varies to the wavelenght. Numerical approach was used in this research is Newton Raphson methods by Python program. Both of simulation and numerical approach yield the value of the maximum wavelength (λ_max) for a black body temperature variation. The black body temperatures and their appropriate maximum wavelength data then analyzed using linear regression. Final result show that value Wien’s constant using PhET is 2,93 × 10-3 mK with relative error obtained is 1,07 % while using Newton Raphson the Wien’s constant value obtained is 3,07 × 10-3 mK with relative error is 5,90 %. The two approachs carried out produce data that slightly different, but still in a very good accucracy range when compared with theory. So, PhET Simulation and Newton Raphson methods effective to examine the value of the Wien’s constant.","PeriodicalId":31790,"journal":{"name":"Physics Communication","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/physcomm.v6i2.39821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this research  was to examine the value of the Wien’s constant using PhET Simulation virtual laboratory and simple numerical approach. The independent and dependent variable is blackbody temperature (T) and maximum wavelength (λ_max). In the use of a virtual laboratory, research is carried out by shifting the black body temperature feature so  the graph will display a spectral power density that varies to the wavelenght. Numerical approach was used in this research is Newton Raphson methods by Python program. Both of simulation and numerical approach yield the value of the maximum wavelength (λ_max) for a black body temperature variation. The black body temperatures and their appropriate maximum wavelength data then analyzed using linear regression. Final result show that value Wien’s constant using PhET is 2,93 × 10-3 mK with relative error obtained is 1,07 % while using Newton Raphson the Wien’s constant value obtained is 3,07 × 10-3 mK with relative error is 5,90 %. The two approachs carried out produce data that slightly different, but still in a very good accucracy range when compared with theory. So, PhET Simulation and Newton Raphson methods effective to examine the value of the Wien’s constant.
用模拟和简单数值方法检验维恩位移常数
本研究的目的是利用PhET模拟虚拟实验室和简单的数值方法来检验维恩常数的值。自变量和因变量分别为黑体温度(T)和最大波长(λ_max)。在虚拟实验室的使用中,通过移动黑体温度特征来进行研究,因此图形将显示随波长变化的光谱功率密度。本研究采用的数值方法是Newton Raphson方法,由Python编写程序。模拟和数值方法都得到了黑体温度变化的最大波长(λ_max)值。然后用线性回归分析黑体温度及其相应的最大波长数据。结果表明:PhET法计算的维恩常数为2.93 × 10-3 mK,相对误差为1.07%;Newton Raphson法计算的维恩常数为3.07 × 10-3 mK,相对误差为5.90%。这两种方法得到的数据略有不同,但与理论相比仍在一个非常好的精度范围内。因此,PhET模拟和Newton Raphson方法可以有效地检验维恩常数的取值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信