A. Mermigkas, I. Timoshkin, S. Macgregor, M. Given, Mark P. Wilson, Tao Wang
{"title":"The use of impulsive corona discharges for the removal of fine particles in a novel coaxial electrostatic precipitator","authors":"A. Mermigkas, I. Timoshkin, S. Macgregor, M. Given, Mark P. Wilson, Tao Wang","doi":"10.1109/PLASMA.2013.6633200","DOIUrl":null,"url":null,"abstract":"Summary form only given. Power plants, internal combustion engines and other sources produce micron and sub-micron particles, which contaminate the air. This problem is faced mainly in large cities where both population and industrial activities are higher leading to significantly reduced air quality. Recent research has pointed out particles less than 2.5 μm in diameter (PM2.5) as a potential health hazard. In the light of these results directives and strict legislation has been put into force in order to reduce PM2.5 emissions. This research paper is focused on an impulsive microelectrostatic precipitation technology in order to charge and remove suspended particles from the air in an economically feasible way. HV impulses together with dc voltage has been used in order to energise the reactor as it has been shown to enhance the precipitation efficiency. In the present work a compact, yet larger in scale, coaxial precipitator has been developed for possible indoor applications. This precipitation system has been tested for removal of smoke and fine airborne particles from ambient air. In addition to the experimental part, analytical work has been conducted in order to optimize the electrostatic precipitation process and reduce power consumption.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"10 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6633200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary form only given. Power plants, internal combustion engines and other sources produce micron and sub-micron particles, which contaminate the air. This problem is faced mainly in large cities where both population and industrial activities are higher leading to significantly reduced air quality. Recent research has pointed out particles less than 2.5 μm in diameter (PM2.5) as a potential health hazard. In the light of these results directives and strict legislation has been put into force in order to reduce PM2.5 emissions. This research paper is focused on an impulsive microelectrostatic precipitation technology in order to charge and remove suspended particles from the air in an economically feasible way. HV impulses together with dc voltage has been used in order to energise the reactor as it has been shown to enhance the precipitation efficiency. In the present work a compact, yet larger in scale, coaxial precipitator has been developed for possible indoor applications. This precipitation system has been tested for removal of smoke and fine airborne particles from ambient air. In addition to the experimental part, analytical work has been conducted in order to optimize the electrostatic precipitation process and reduce power consumption.