Novel approach employing buck-boost converter as DC-link modulator and inverter as AC-chopper for induction motor drive applications: An alternative to conventional AC-DC-AC scheme
{"title":"Novel approach employing buck-boost converter as DC-link modulator and inverter as AC-chopper for induction motor drive applications: An alternative to conventional AC-DC-AC scheme","authors":"P. N. Tekwani, Patel Vidhi Manilal","doi":"10.1109/ISIE.2017.8001347","DOIUrl":null,"url":null,"abstract":"Induction motor (IM) is the workhorse of the industries. Amongst various speed control schemes for IM, variable-voltage variable-frequency (VVVF) is popularly used. Inverters are broadly used to produce variable/controlled frequency and variable/controlled output voltage for various applications like ac machine drives, switched mode power supply (SMPS), uninterruptible power supplies (UPS), etc. This paper presents the two-fold solution of control for such loads. In this novel solution, rms values of output voltage is varied by controlling the inverter duty ratio which operates as an ac-chopper, while the fundamental frequency of output voltage is varied by controlling the buck-boost converter according to the reference frequency given to it. The buck-boost converter shuffles between buck-mode and boost-mode to produce required frequency by generating the modulated dc-link for the inverter, unlike conventional fixed dc-link in case of ac-dc-ac converters. The proposed technique eliminates overmodulation (as in conventional pulse width modulated inverters) and hence the non-linearity, and lower order harmonics are absent. Further, it reduces dv/dt in the output voltage resulting less stress on the insulation of machine winding, and electromagnetic interference. However, the proposed scheme demands more number of power semiconductor devices as compared to their conventional ac-dc-ac counterparts. Simulation studies of proposed single-phase as well as three-phase topologies are carried out in MATLAB/Simulink. Hardware implementation of proposed single-phase topology is done using dSPACE DS1104 R&D controller board and results are presented.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"17 1","pages":"793-800"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Induction motor (IM) is the workhorse of the industries. Amongst various speed control schemes for IM, variable-voltage variable-frequency (VVVF) is popularly used. Inverters are broadly used to produce variable/controlled frequency and variable/controlled output voltage for various applications like ac machine drives, switched mode power supply (SMPS), uninterruptible power supplies (UPS), etc. This paper presents the two-fold solution of control for such loads. In this novel solution, rms values of output voltage is varied by controlling the inverter duty ratio which operates as an ac-chopper, while the fundamental frequency of output voltage is varied by controlling the buck-boost converter according to the reference frequency given to it. The buck-boost converter shuffles between buck-mode and boost-mode to produce required frequency by generating the modulated dc-link for the inverter, unlike conventional fixed dc-link in case of ac-dc-ac converters. The proposed technique eliminates overmodulation (as in conventional pulse width modulated inverters) and hence the non-linearity, and lower order harmonics are absent. Further, it reduces dv/dt in the output voltage resulting less stress on the insulation of machine winding, and electromagnetic interference. However, the proposed scheme demands more number of power semiconductor devices as compared to their conventional ac-dc-ac counterparts. Simulation studies of proposed single-phase as well as three-phase topologies are carried out in MATLAB/Simulink. Hardware implementation of proposed single-phase topology is done using dSPACE DS1104 R&D controller board and results are presented.