Keyword spotting in historical document collections withoutsegmentation using the Siamese Network

A. Sapkal, Chhavi, Shashank Sharma, Pradeep Kumar, Sachin Yadav
{"title":"Keyword spotting in historical document collections withoutsegmentation using the Siamese Network","authors":"A. Sapkal, Chhavi, Shashank Sharma, Pradeep Kumar, Sachin Yadav","doi":"10.1109/ICSES52305.2021.9633920","DOIUrl":null,"url":null,"abstract":"Keyword spotting is the method of estimating whether the text query occurs in the document or not. The query- by-example model is used in this paper to present an efficient segmentation-free keyword spotting approach that can be applied in historical document collections. For image de-noising and binarization, we use an autoencoder network in our approach. We are using a patch-based system to create patches for the binarized image, followed by a Siamese network. To determine the degree of similarity between two input word images, a Siamese network employs two identical convolutional networks. Once trained, the network can detect not only words from different writing styles and contexts, but also words that are not in the training set. The method proposed is evaluated on the Bengali Handwritten dataset.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"11 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Keyword spotting is the method of estimating whether the text query occurs in the document or not. The query- by-example model is used in this paper to present an efficient segmentation-free keyword spotting approach that can be applied in historical document collections. For image de-noising and binarization, we use an autoencoder network in our approach. We are using a patch-based system to create patches for the binarized image, followed by a Siamese network. To determine the degree of similarity between two input word images, a Siamese network employs two identical convolutional networks. Once trained, the network can detect not only words from different writing styles and contexts, but also words that are not in the training set. The method proposed is evaluated on the Bengali Handwritten dataset.
基于Siamese网络的无分词历史文献中的关键词识别
关键词识别是一种估计文本查询是否出现在文档中的方法。本文采用逐例查询模型提出了一种有效的无分割关键字识别方法,该方法可应用于历史文档集合。对于图像去噪和二值化,我们在我们的方法中使用了自编码器网络。我们使用基于补丁的系统为二值化后的图像创建补丁,然后使用暹罗网络。为了确定两个输入词图像之间的相似程度,Siamese网络使用了两个相同的卷积网络。经过训练后,网络不仅可以检测来自不同写作风格和上下文的单词,还可以检测不在训练集中的单词。在孟加拉语手写数据集上对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信