Modelling Innovation and Growth in Panel Data

IF 2.1 Q3 BUSINESS
B. Mu, Yue Li
{"title":"Modelling Innovation and Growth in Panel Data","authors":"B. Mu, Yue Li","doi":"10.56502/ijie1010003","DOIUrl":null,"url":null,"abstract":"This paper comprehensively reviews how innovation and growth are modelled in theoretical and empirical literature. We distinguish between economic modelling (microfounded) and econometric modelling (ad hoc). The two modelling approaches are complementary to each other for their comparative advantages in causality identification and forecasting performance. Popular models of the two approaches are illustrated and compared. We also propose an eclectic approach to combine the two approaches in one analysis framework.","PeriodicalId":46622,"journal":{"name":"International Journal of Entrepreneurship and Innovation","volume":"31 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Entrepreneurship and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56502/ijie1010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper comprehensively reviews how innovation and growth are modelled in theoretical and empirical literature. We distinguish between economic modelling (microfounded) and econometric modelling (ad hoc). The two modelling approaches are complementary to each other for their comparative advantages in causality identification and forecasting performance. Popular models of the two approaches are illustrated and compared. We also propose an eclectic approach to combine the two approaches in one analysis framework.
面板数据的建模创新和增长
本文全面回顾了理论和实证文献中创新和增长是如何建模的。我们区分经济模型(微观)和计量经济学模型(特设)。这两种建模方法因其在因果关系识别和预测性能方面的比较优势而相互补充。对这两种方法的流行模型进行了说明和比较。我们还提出了一种折衷的方法,将这两种方法结合在一个分析框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
29.60%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信