Deep Recurrent Neural Networks for Nonlinear System Identification

Max Schüssler, T. Münker, O. Nelles
{"title":"Deep Recurrent Neural Networks for Nonlinear System Identification","authors":"Max Schüssler, T. Münker, O. Nelles","doi":"10.1109/SSCI44817.2019.9003133","DOIUrl":null,"url":null,"abstract":"Deep recurrent neural networks are used as a means for nonlinear system identification. It is shown that state space models can be transformed into recurrent neural networks and vice versa. This transformation and the understanding of the long short-term memory cell in terms of common system identification nomenclature makes the advances in deep learning more accessible to the controls and system identification communities. A systematic study of deep recurrent neural networks is carried out on a state-of-the-art system identification benchmark. The results indicate that if high amounts of data are available, standard recurrent neural networks achieve comparable performance to state-of-the-art system identification methods.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"448-454"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deep recurrent neural networks are used as a means for nonlinear system identification. It is shown that state space models can be transformed into recurrent neural networks and vice versa. This transformation and the understanding of the long short-term memory cell in terms of common system identification nomenclature makes the advances in deep learning more accessible to the controls and system identification communities. A systematic study of deep recurrent neural networks is carried out on a state-of-the-art system identification benchmark. The results indicate that if high amounts of data are available, standard recurrent neural networks achieve comparable performance to state-of-the-art system identification methods.
用于非线性系统辨识的深度递归神经网络
采用深度递归神经网络作为非线性系统辨识的手段。结果表明,状态空间模型可以转化为递归神经网络,反之亦然。这种转换和对长短期记忆细胞在通用系统识别术语方面的理解使得深度学习的进步更容易被控制和系统识别社区所接受。在最先进的系统识别基准上对深度递归神经网络进行了系统研究。结果表明,如果有大量的可用数据,标准的递归神经网络可以达到与最先进的系统识别方法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信