Complex activity recognition system based on cascade classifiers and wearable device data

L. Ciabattoni, G. Foresi, A. Monteriù, D. P. Pagnotta, L. Romeo, L. Spalazzi, A. Cesare
{"title":"Complex activity recognition system based on cascade classifiers and wearable device data","authors":"L. Ciabattoni, G. Foresi, A. Monteriù, D. P. Pagnotta, L. Romeo, L. Spalazzi, A. Cesare","doi":"10.1109/ICCE.2018.8326283","DOIUrl":null,"url":null,"abstract":"This paper proposes a system for recognizing human complex activities by using unobtrusive sensors such as smartphone, smartwatch and bluetooth beacons. The method encapsulates two classification stages. The former is composed of two parallel processes: the Main Activity Detection (MAD) and the Room Detection (RD). The latter implements the Complex Activity Detection (CAD) process by exploiting the outputs of the first stage and the accelerometer data of the smartwatch. The cascade classification approach that combines the room detection with the main/complex activities recognition task constitutes the novelty of the work. Preliminary results demonstrate the reliability of the system in terms of accuracy and macro-Fl score.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"4 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2018.8326283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a system for recognizing human complex activities by using unobtrusive sensors such as smartphone, smartwatch and bluetooth beacons. The method encapsulates two classification stages. The former is composed of two parallel processes: the Main Activity Detection (MAD) and the Room Detection (RD). The latter implements the Complex Activity Detection (CAD) process by exploiting the outputs of the first stage and the accelerometer data of the smartwatch. The cascade classification approach that combines the room detection with the main/complex activities recognition task constitutes the novelty of the work. Preliminary results demonstrate the reliability of the system in terms of accuracy and macro-Fl score.
基于级联分类器和可穿戴设备数据的复杂活动识别系统
本文提出了一种利用智能手机、智能手表和蓝牙信标等不显眼的传感器识别人类复杂活动的系统。该方法封装了两个分类阶段。前者由两个并行过程组成:主活动检测(MAD)和房间检测(RD)。后者通过利用第一阶段的输出和智能手表的加速度计数据实现复杂活动检测(CAD)过程。将房间检测与主要/复杂活动识别任务相结合的级联分类方法构成了该工作的新颖性。初步结果表明,该系统在准确率和宏观分数方面是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信