Company Profit Prediction Based On Forecasting Of Port Throughput Using Time Series-Adaptive Neuro Fuzzy Inference System

Victory Tyas Pambudi Swindiarto, M. I. Irawan
{"title":"Company Profit Prediction Based On Forecasting Of Port Throughput Using Time Series-Adaptive Neuro Fuzzy Inference System","authors":"Victory Tyas Pambudi Swindiarto, M. I. Irawan","doi":"10.12962/j23546026.y2020i1.11949","DOIUrl":null,"url":null,"abstract":"As a maritime country, ports play an important role in economic development in Indonesia. Throughput is an important factor affecting Port Profits. This prediction is needed in an effort to find out the company's prospects, help estimate the long-term profitability of representatives, predict earnings, and estimate risk in investment. In this research, forecasting data throughput will be carried out, such as container traffic, number of ships, export traffics, goods traffic, animal flow and passenger traffic for the next year using Time Series-Adaptive Neuro Fuzzy Inference System (TS-ANFIS) as an input parameter in the decision support system. Before predicting the benefits of the port using the ANFIS method, principal component analysis (PCA) was applied to reduce parameters that did not sufficiently affect the profits of the port. The data used are time series data from 2009 to 2018. From the system built it is expected to be able to provide good results in predicting the value of port throughput using TS-ANFIS and to predict profit values using the ANFIS method. The best results from profit prediction using ANFIS obtained R2 of 0.947, RMSE of 28524582.39, MAPE of 14.74% and MAAPE of 0.145. From the prediction results, it can be used as a reference for company projections in investing, managing cash flow, managing assets and global bonds. KeywordsANFIS, PCA, Time Series, Throughput, Port, Profit.","PeriodicalId":14533,"journal":{"name":"IPTEK Journal of Proceedings Series","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPTEK Journal of Proceedings Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j23546026.y2020i1.11949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a maritime country, ports play an important role in economic development in Indonesia. Throughput is an important factor affecting Port Profits. This prediction is needed in an effort to find out the company's prospects, help estimate the long-term profitability of representatives, predict earnings, and estimate risk in investment. In this research, forecasting data throughput will be carried out, such as container traffic, number of ships, export traffics, goods traffic, animal flow and passenger traffic for the next year using Time Series-Adaptive Neuro Fuzzy Inference System (TS-ANFIS) as an input parameter in the decision support system. Before predicting the benefits of the port using the ANFIS method, principal component analysis (PCA) was applied to reduce parameters that did not sufficiently affect the profits of the port. The data used are time series data from 2009 to 2018. From the system built it is expected to be able to provide good results in predicting the value of port throughput using TS-ANFIS and to predict profit values using the ANFIS method. The best results from profit prediction using ANFIS obtained R2 of 0.947, RMSE of 28524582.39, MAPE of 14.74% and MAAPE of 0.145. From the prediction results, it can be used as a reference for company projections in investing, managing cash flow, managing assets and global bonds. KeywordsANFIS, PCA, Time Series, Throughput, Port, Profit.
基于时间序列-自适应神经模糊推理系统港口吞吐量预测的公司利润预测
作为一个海洋国家,港口在印尼的经济发展中扮演着重要的角色。吞吐量是影响港口利润的重要因素。这种预测是在努力找出公司的前景,帮助估计代表的长期盈利能力,预测收益和估计投资风险时需要的。本研究将使用时序自适应神经模糊推理系统(TS-ANFIS)作为决策支持系统的输入参数,对下一年的集装箱运输量、船舶数量、出口运输量、货物运输量、动物运输量和客运量等数据吞吐量进行预测。在使用ANFIS方法预测港口效益之前,主成分分析(PCA)被应用于减少没有充分影响港口利润的参数。使用的数据为2009 - 2018年的时间序列数据。从构建的系统中,预计能够使用TS-ANFIS预测港口吞吐量的值,并使用ANFIS方法预测利润值。利用ANFIS进行利润预测的最佳结果为R2为0.947,RMSE为28524582.39,MAPE为14.74%,MAAPE为0.145。从预测结果来看,可以作为公司在投资、管理现金流、管理资产和全球债券方面进行预测的参考。关键词ANFIS, PCA,时间序列,吞吐量,港口,利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信