Hung Nguyen, Radoslav Ivanov, Sara B. DeMauro, James Weimer
{"title":"RePulmo","authors":"Hung Nguyen, Radoslav Ivanov, Sara B. DeMauro, James Weimer","doi":"10.1145/3357495.3357501","DOIUrl":null,"url":null,"abstract":"Remote physiological monitoring is increasing in popularity with the evolution of technologies in the healthcare industry. However, the current solutions for remote monitoring of blood-oxygen saturation, one of the most common continuously monitored vital signs, either have inconsistent accuracy or are not secure for transmitting over the network. In this paper, we propose RePulmo, an open-source platform for secure and accurate remote pulmonary data monitoring. RePulmo satisfies both robustness and security requirements by utilizing hospital-grade pulse oximeter devices with multiple layers of security enforcement. We describe two applications of RePulmo, namely (1) a remote pulmonary monitoring system for infants to support the Children's Hospital of Philadelphia (CHOP) clinical trial; (2) a proof-of-concept of a low SpO2 smart alarm system.","PeriodicalId":37024,"journal":{"name":"ACM SIGBED Review","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGBED Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357495.3357501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Remote physiological monitoring is increasing in popularity with the evolution of technologies in the healthcare industry. However, the current solutions for remote monitoring of blood-oxygen saturation, one of the most common continuously monitored vital signs, either have inconsistent accuracy or are not secure for transmitting over the network. In this paper, we propose RePulmo, an open-source platform for secure and accurate remote pulmonary data monitoring. RePulmo satisfies both robustness and security requirements by utilizing hospital-grade pulse oximeter devices with multiple layers of security enforcement. We describe two applications of RePulmo, namely (1) a remote pulmonary monitoring system for infants to support the Children's Hospital of Philadelphia (CHOP) clinical trial; (2) a proof-of-concept of a low SpO2 smart alarm system.