An enhanced analytical Neuro-Space Mapping method for large-signal microwave device modeling

Lin Zhu, Kaihua Liu, Qi-jun Zhang, Yongtao Ma, Bo Peng
{"title":"An enhanced analytical Neuro-Space Mapping method for large-signal microwave device modeling","authors":"Lin Zhu, Kaihua Liu, Qi-jun Zhang, Yongtao Ma, Bo Peng","doi":"10.1109/MWSYM.2012.6259712","DOIUrl":null,"url":null,"abstract":"In this paper, an advanced Neuro-Space Mapping (SM) modeling technique for nonlinear device modeling is proposed. By neural network mapping of the voltage and current signals from the coarse to the fine models, Neuro-SM can modify the behavior of the coarse model to match that of the fine model. The novelty of our work is to introduce a Neuro-SM model combining separate mappings for voltage and current and to derive analytical mapping representation to train the mapping neural networks to learn DC, small and large-signal data. Application examples on modeling MESFET devices and the use of the new model in DC, combined DC,S-parameter and Harmonic balance (HB) simulation demonstrate that our analytical Neuro-SM model matches more closely with the device data than that by the previous Neuro-SM method for modeling large-signal microwave devices.","PeriodicalId":6385,"journal":{"name":"2012 IEEE/MTT-S International Microwave Symposium Digest","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2012.6259712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, an advanced Neuro-Space Mapping (SM) modeling technique for nonlinear device modeling is proposed. By neural network mapping of the voltage and current signals from the coarse to the fine models, Neuro-SM can modify the behavior of the coarse model to match that of the fine model. The novelty of our work is to introduce a Neuro-SM model combining separate mappings for voltage and current and to derive analytical mapping representation to train the mapping neural networks to learn DC, small and large-signal data. Application examples on modeling MESFET devices and the use of the new model in DC, combined DC,S-parameter and Harmonic balance (HB) simulation demonstrate that our analytical Neuro-SM model matches more closely with the device data than that by the previous Neuro-SM method for modeling large-signal microwave devices.
一种用于大信号微波器件建模的增强分析神经空间映射方法
本文提出了一种用于非线性器件建模的神经空间映射(SM)建模技术。通过神经网络将电压和电流信号从粗模型映射到精细模型,neurosm可以修改粗模型的行为以匹配精细模型的行为。我们工作的新颖之处在于引入了一个结合电压和电流独立映射的神经网络模型,并推导出解析映射表示来训练映射神经网络来学习直流、小信号和大信号数据。在MESFET器件建模以及新模型在直流、直流、s参数和谐波平衡(HB)联合仿真中的应用实例表明,我们的分析神经- sm模型比以前的大信号微波器件建模神经- sm方法更接近器件数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信