Operator and Query Progress Estimation in Microsoft SQL Server Live Query Statistics

Kukjin Lee, A. König, Vivek R. Narasayya, Bolin Ding, S. Chaudhuri, Brent Ellwein, Alexey Eksarevskiy, Manbeen Kohli, Jacob Wyant, Praneeta Prakash, Rimma V. Nehme, Jiexing Li, J. Naughton
{"title":"Operator and Query Progress Estimation in Microsoft SQL Server Live Query Statistics","authors":"Kukjin Lee, A. König, Vivek R. Narasayya, Bolin Ding, S. Chaudhuri, Brent Ellwein, Alexey Eksarevskiy, Manbeen Kohli, Jacob Wyant, Praneeta Prakash, Rimma V. Nehme, Jiexing Li, J. Naughton","doi":"10.1145/2882903.2903728","DOIUrl":null,"url":null,"abstract":"We describe the design and implementation of the new Live Query Statistics (LQS) feature in Microsoft SQL Server 2016. The functionality includes the display of overall query progress as well as progress of individual operators in the query execution plan. We describe the overall functionality of LQS, give usage examples and detail all areas where we had to extend the current state-of-the-art to build the complete LQS feature. Finally, we evaluate the effect these extensions have on progress estimation accuracy with a series of experiments using a large set of synthetic and real workloads.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2903728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We describe the design and implementation of the new Live Query Statistics (LQS) feature in Microsoft SQL Server 2016. The functionality includes the display of overall query progress as well as progress of individual operators in the query execution plan. We describe the overall functionality of LQS, give usage examples and detail all areas where we had to extend the current state-of-the-art to build the complete LQS feature. Finally, we evaluate the effect these extensions have on progress estimation accuracy with a series of experiments using a large set of synthetic and real workloads.
Microsoft SQL Server实时查询统计中的算子和查询进度估计
我们描述了Microsoft SQL Server 2016中新的实时查询统计(LQS)功能的设计和实现。该功能包括显示总体查询进度以及查询执行计划中单个操作符的进度。我们描述了LQS的整体功能,给出了使用示例,并详细介绍了我们必须扩展当前最先进技术以构建完整LQS功能的所有领域。最后,我们通过一系列使用大量合成和真实工作负载的实验来评估这些扩展对进度估计精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信