Stochastic approximation schemes for economic capital and risk margin computations

D. Barrera, S. Crépey, B. Diallo, B. Diallo, G. Fort, E. Gobet, Uladzislau Stazhynski
{"title":"Stochastic approximation schemes for economic capital and risk margin computations","authors":"D. Barrera, S. Crépey, B. Diallo, B. Diallo, G. Fort, E. Gobet, Uladzislau Stazhynski","doi":"10.1051/proc/201965182","DOIUrl":null,"url":null,"abstract":"We consider the problem of the numerical computation of its economic capital by an insurance or a bank, in the form of a value-at-risk or expected shortfall of its loss over a given time horizon. This loss includes the appreciation of the mark-to-model of the liabilities of the firm, which we account for by nested Monte Carlo à la Gordy and Juneja [17] or by regression à la Broadie, Du, and Moallemi [10]. Using a stochastic approximation point of view on value-at-risk and expected shortfall, we establish the convergence of the resulting economic capital simulation schemes, under mild assumptions that only bear on the theoretical limiting problem at hand, as opposed to assumptions on the approximating problems in [17] and [10]. Our economic capital estimates can then be made conditional in a Markov framework and integrated in an outer Monte Carlo simulation to yield the risk margin of the firm, corresponding to a market value margin (MVM) in insurance or to a capital valuation adjustment (KVA) in banking parlance. This is illustrated numerically by a KVA case study implemented on GPUs.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/201965182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the problem of the numerical computation of its economic capital by an insurance or a bank, in the form of a value-at-risk or expected shortfall of its loss over a given time horizon. This loss includes the appreciation of the mark-to-model of the liabilities of the firm, which we account for by nested Monte Carlo à la Gordy and Juneja [17] or by regression à la Broadie, Du, and Moallemi [10]. Using a stochastic approximation point of view on value-at-risk and expected shortfall, we establish the convergence of the resulting economic capital simulation schemes, under mild assumptions that only bear on the theoretical limiting problem at hand, as opposed to assumptions on the approximating problems in [17] and [10]. Our economic capital estimates can then be made conditional in a Markov framework and integrated in an outer Monte Carlo simulation to yield the risk margin of the firm, corresponding to a market value margin (MVM) in insurance or to a capital valuation adjustment (KVA) in banking parlance. This is illustrated numerically by a KVA case study implemented on GPUs.
经济资本和风险边际计算的随机逼近方案
我们考虑了保险公司或银行对其经济资本进行数值计算的问题,其形式是在给定时间范围内的风险价值或预期损失不足。这一损失包括公司负债的“按模型计价”的增值,我们通过嵌套蒙特卡洛法(la Gordy和Juneja[17])或回归法(la broaddie、Du和Moallemi[10])来解释这一损失。使用风险价值和预期不足的随机逼近观点,我们在仅对手头的理论极限问题负责的温和假设下建立了由此产生的经济资本模拟方案的收敛性,而不是对[17]和[10]中的近似问题的假设。然后,我们的经济资本估计可以在马尔可夫框架中进行条件化,并集成到外部蒙特卡洛模拟中,以产生公司的风险边际,对应于保险中的市场价值边际(MVM)或银行术语中的资本估值调整(KVA)。这通过在gpu上实现的KVA案例研究进行了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信