Completeness of shifted dilates in invariant Banach spaces of tempered distributions

H. Feichtinger, Anupam Gumber
{"title":"Completeness of shifted dilates in invariant Banach spaces of tempered distributions","authors":"H. Feichtinger, Anupam Gumber","doi":"10.1090/PROC/15564","DOIUrl":null,"url":null,"abstract":"We show that well-established methods from the theory of Banach modules and time-frequency analysis allow to derive completeness results for the collection of shifted and dilated version of a given (test) function in a quite general setting. While the basic ideas show strong similarity to the arguments used in a recent paper by V.~Katsnelson we extend his results in several directions, both relaxing the assumptions and widening the range of applications. There is no need for the Banach spaces considered to be embedded into $(L^2(\\mathbb{R}), ||\\cdot{}||_2)$, nor is the Hilbert space structure relevant. We choose to present the results in the setting of the Euclidean spaces, because then the Schwartz space $\\mathcal{S}^{\\prime}(\\mathbb{R}^d)$ ($d \\geq 1$) of tempered distributions provides a well-established environment for mathematical analysis. We also establish connections to modulation spaces and Shubin classes $({Q}_{s}(\\mathbb{R}^d), ||\\cdot{}||_{Q_s})$, showing that they are special cases of Katsnelson's setting (only) for $s \\geq 0$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We show that well-established methods from the theory of Banach modules and time-frequency analysis allow to derive completeness results for the collection of shifted and dilated version of a given (test) function in a quite general setting. While the basic ideas show strong similarity to the arguments used in a recent paper by V.~Katsnelson we extend his results in several directions, both relaxing the assumptions and widening the range of applications. There is no need for the Banach spaces considered to be embedded into $(L^2(\mathbb{R}), ||\cdot{}||_2)$, nor is the Hilbert space structure relevant. We choose to present the results in the setting of the Euclidean spaces, because then the Schwartz space $\mathcal{S}^{\prime}(\mathbb{R}^d)$ ($d \geq 1$) of tempered distributions provides a well-established environment for mathematical analysis. We also establish connections to modulation spaces and Shubin classes $({Q}_{s}(\mathbb{R}^d), ||\cdot{}||_{Q_s})$, showing that they are special cases of Katsnelson's setting (only) for $s \geq 0$.
缓变分布不变Banach空间中位移扩张的完备性
我们表明,从Banach模理论和时频分析中建立的方法允许在相当一般的设置中导出给定(测试)函数的移位和扩展版本集合的完备性结果。虽然基本思想与V. Katsnelson最近的一篇论文中使用的论点非常相似,但我们在几个方向上扩展了他的结果,既放松了假设,又扩大了应用范围。不需要将巴拿赫空间嵌入$(L^2(\mathbb{R}), ||\cdot{}||_2)$,希尔伯特空间结构也不相关。我们选择在欧几里得空间的设置中呈现结果,因为这样,缓变分布的Schwartz空间$\mathcal{S}^{\prime}(\mathbb{R}^d)$ ($d \geq 1$)为数学分析提供了一个完善的环境。我们还建立了与调制空间和Shubin类$({Q}_{s}(\mathbb{R}^d), ||\cdot{}||_{Q_s})$的联系,表明它们是(仅)$s \geq 0$的Katsnelson设置的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信