{"title":"Extrapolation for multilinear compact operators and applications","authors":"Mingming Cao, Andrea Olivo, K. Yabuta","doi":"10.1090/tran/8645","DOIUrl":null,"url":null,"abstract":"This paper is devoted to studying the Rubio de Francia extrapolation for multilinear compact operators. It allows one to extrapolate the compactness of $T$ from just one space to the full range of weighted spaces, whenever an $m$-linear operator $T$ is bounded on weighted Lebesgue spaces. This result is indeed established in terms of the multilinear Muckenhoupt weights $A_{\\vec{p}, \\vec{r}}$, and the limited range of the $L^p$ scale. As applications, we obtain the weighted compactness of commutators of many multilinear operators, including multilinear $\\omega$-Calder\\'{o}n-Zygmund operators, multilinear Fourier multipliers, bilinear rough singular integrals and bilinear Bochner-Riesz means.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper is devoted to studying the Rubio de Francia extrapolation for multilinear compact operators. It allows one to extrapolate the compactness of $T$ from just one space to the full range of weighted spaces, whenever an $m$-linear operator $T$ is bounded on weighted Lebesgue spaces. This result is indeed established in terms of the multilinear Muckenhoupt weights $A_{\vec{p}, \vec{r}}$, and the limited range of the $L^p$ scale. As applications, we obtain the weighted compactness of commutators of many multilinear operators, including multilinear $\omega$-Calder\'{o}n-Zygmund operators, multilinear Fourier multipliers, bilinear rough singular integrals and bilinear Bochner-Riesz means.