Extrapolation for multilinear compact operators and applications

Mingming Cao, Andrea Olivo, K. Yabuta
{"title":"Extrapolation for multilinear compact operators and applications","authors":"Mingming Cao, Andrea Olivo, K. Yabuta","doi":"10.1090/tran/8645","DOIUrl":null,"url":null,"abstract":"This paper is devoted to studying the Rubio de Francia extrapolation for multilinear compact operators. It allows one to extrapolate the compactness of $T$ from just one space to the full range of weighted spaces, whenever an $m$-linear operator $T$ is bounded on weighted Lebesgue spaces. This result is indeed established in terms of the multilinear Muckenhoupt weights $A_{\\vec{p}, \\vec{r}}$, and the limited range of the $L^p$ scale. As applications, we obtain the weighted compactness of commutators of many multilinear operators, including multilinear $\\omega$-Calder\\'{o}n-Zygmund operators, multilinear Fourier multipliers, bilinear rough singular integrals and bilinear Bochner-Riesz means.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper is devoted to studying the Rubio de Francia extrapolation for multilinear compact operators. It allows one to extrapolate the compactness of $T$ from just one space to the full range of weighted spaces, whenever an $m$-linear operator $T$ is bounded on weighted Lebesgue spaces. This result is indeed established in terms of the multilinear Muckenhoupt weights $A_{\vec{p}, \vec{r}}$, and the limited range of the $L^p$ scale. As applications, we obtain the weighted compactness of commutators of many multilinear operators, including multilinear $\omega$-Calder\'{o}n-Zygmund operators, multilinear Fourier multipliers, bilinear rough singular integrals and bilinear Bochner-Riesz means.
多线性紧算子的外推及其应用
本文研究了多线性紧算子的Rubio de Francia外推。当一个$m$ -线性算子$T$在加权Lebesgue空间上有界时,它允许我们从一个空间向整个加权空间外推$T$的紧性。这个结果确实是建立在多元线性Muckenhoupt权重$A_{\vec{p}, \vec{r}}$和$L^p$量表的有限范围内。作为应用,我们得到了许多多重线性算子的交换子的加权紧性,包括多重线性$\omega$ -Calderón-Zygmund算子、多重线性傅立叶乘子、双线性粗糙奇异积分和双线性Bochner-Riesz均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信