{"title":"Rational sequences on different models of elliptic curves","authors":"Gamze Savacs cCEL.IK, M. Sadek, G. Soydan","doi":"10.3336/gm.54.1.04","DOIUrl":null,"url":null,"abstract":"Given a set $S$ of elements in a number field $k$, we discuss the existence of planar algebraic curves over $k$ which possess rational points whose $x$-coordinates are exactly the elements of $S$. If the size $|S|$ of $S$ is either $4,5$, or $6$, we exhibit infinite families of (twisted) Edwards curves and (general) Huff curves for which the elements of $S$ are realized as the $x$-coordinates of rational points on these curves. This generalizes earlier work on progressions of certain types on some algebraic curves.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Given a set $S$ of elements in a number field $k$, we discuss the existence of planar algebraic curves over $k$ which possess rational points whose $x$-coordinates are exactly the elements of $S$. If the size $|S|$ of $S$ is either $4,5$, or $6$, we exhibit infinite families of (twisted) Edwards curves and (general) Huff curves for which the elements of $S$ are realized as the $x$-coordinates of rational points on these curves. This generalizes earlier work on progressions of certain types on some algebraic curves.