Investigation of vapour—liquid equilibrium of non-ideal multicomponent systems

P. Pöllmann , M.H. Bauer , E. Blaβ
{"title":"Investigation of vapour—liquid equilibrium of non-ideal multicomponent systems","authors":"P. Pöllmann ,&nbsp;M.H. Bauer ,&nbsp;E. Blaβ","doi":"10.1016/S0950-4214(96)00023-0","DOIUrl":null,"url":null,"abstract":"<div><p>Fundamentals and computer-aided methods of practice for the calculation and checking of azeotropes, and for the qualitative and rigorous determination of separating spaces for closed distillation are presented, which are valid for non-ideal multicomponent systems. Separating spaces can occur in azeotropic systems only and are decisive for the separability of a system, if distillation is the separation technique. As a prerequisite, a rigorous mathematical model of the vapour-liquid equilibrium is required. The eigenvalues and eigenvectors of the Jacobian matrix of the equilibrium concentrations are the key ingredients of several methods: the eigenvalues describe the asymptotic behaviour of closed distillation profiles, which indicates the order according to which components can be separated; the eigenvalues enter a topological equation for checking the thermodynamic consistency of the azeotropes of a system; the eigenvectors initiate paths connecting azeotropes and pure substances, from the network of which separating spaces can be deduced qualitatively; and eigenvectors are essential to initiate the rigorous profiles of separating spaces.</p></div>","PeriodicalId":12586,"journal":{"name":"Gas Separation & Purification","volume":"10 4","pages":"Pages 225-241"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0950-4214(96)00023-0","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Separation & Purification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950421496000230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Fundamentals and computer-aided methods of practice for the calculation and checking of azeotropes, and for the qualitative and rigorous determination of separating spaces for closed distillation are presented, which are valid for non-ideal multicomponent systems. Separating spaces can occur in azeotropic systems only and are decisive for the separability of a system, if distillation is the separation technique. As a prerequisite, a rigorous mathematical model of the vapour-liquid equilibrium is required. The eigenvalues and eigenvectors of the Jacobian matrix of the equilibrium concentrations are the key ingredients of several methods: the eigenvalues describe the asymptotic behaviour of closed distillation profiles, which indicates the order according to which components can be separated; the eigenvalues enter a topological equation for checking the thermodynamic consistency of the azeotropes of a system; the eigenvectors initiate paths connecting azeotropes and pure substances, from the network of which separating spaces can be deduced qualitatively; and eigenvectors are essential to initiate the rigorous profiles of separating spaces.

非理想多组分系统汽液平衡的研究
本文介绍了共沸物计算和校核的基本原理和计算机辅助实践方法,以及闭式蒸馏分离空间的定性和严格确定,这些方法适用于非理想多组分体系。分离空间只能发生在共沸体系中,如果蒸馏是分离技术,则分离空间对体系的可分离性起决定性作用。作为先决条件,需要一个严密的汽液平衡数学模型。平衡浓度的雅可比矩阵的特征值和特征向量是几种方法的关键成分:特征值描述了封闭蒸馏剖面的渐近行为,表明组分可以分离的顺序;特征值进入拓扑方程,用于检查体系共沸物的热力学一致性;特征向量启动了连接共沸物和纯物质的路径,从该网络中可以定性地推导出分离空间;特征向量对于建立严格的分离空间轮廓是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信