{"title":"Model Predictive Control of a Four-Level T-NNPC Inverter without Weighting Factors","authors":"Zhituo Ni, M. Narimani, José R. Rodríguez","doi":"10.1109/APEC42165.2021.9487042","DOIUrl":null,"url":null,"abstract":"The finite control set model predictive control (FCS-MPC) has obtained a lot of attention for power converters due to its advantages of high performance and multi-objective capability. In conventional MPC formulation, the multi-objective capability is achieved through designing a cost function with delicate weighting factors. The choice of the weighing factors influences the system performance or even stability in some cases. To avoid this problem, this paper proposes a finite control set model predictive control (FCS-MPC) scheme that achieves multi-objectives without introducing any weighting factors. The proposed MPC scheme is validated on a four-level T-NNPC inverter where the multi-objective such as current tracking, floating capacitor balancing, and common-mode voltage (CMV) reduction are all desired. Compared with the conventional cost-function-based MPC scheme, the MPC controller design procedures is simplified without sacrificing the overall performance. The simulations validate the performance of the proposed MPC scheme.","PeriodicalId":7050,"journal":{"name":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC42165.2021.9487042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The finite control set model predictive control (FCS-MPC) has obtained a lot of attention for power converters due to its advantages of high performance and multi-objective capability. In conventional MPC formulation, the multi-objective capability is achieved through designing a cost function with delicate weighting factors. The choice of the weighing factors influences the system performance or even stability in some cases. To avoid this problem, this paper proposes a finite control set model predictive control (FCS-MPC) scheme that achieves multi-objectives without introducing any weighting factors. The proposed MPC scheme is validated on a four-level T-NNPC inverter where the multi-objective such as current tracking, floating capacitor balancing, and common-mode voltage (CMV) reduction are all desired. Compared with the conventional cost-function-based MPC scheme, the MPC controller design procedures is simplified without sacrificing the overall performance. The simulations validate the performance of the proposed MPC scheme.