Zero-shot Visual Commonsense Immorality Prediction

Yujin Jeong, Seongbeom Park, Suhong Moon, Jinkyu Kim
{"title":"Zero-shot Visual Commonsense Immorality Prediction","authors":"Yujin Jeong, Seongbeom Park, Suhong Moon, Jinkyu Kim","doi":"10.48550/arXiv.2211.05521","DOIUrl":null,"url":null,"abstract":"Artificial intelligence is currently powering diverse real-world applications. These applications have shown promising performance, but raise complicated ethical issues, i.e. how to embed ethics to make AI applications behave morally. One way toward moral AI systems is by imitating human prosocial behavior and encouraging some form of good behavior in systems. However, learning such normative ethics (especially from images) is challenging mainly due to a lack of data and labeling complexity. Here, we propose a model that predicts visual commonsense immorality in a zero-shot manner. We train our model with an ETHICS dataset (a pair of text and morality annotation) via a CLIP-based image-text joint embedding. In a testing phase, the immorality of an unseen image is predicted. We evaluate our model with existing moral/immoral image datasets and show fair prediction performance consistent with human intuitions. Further, we create a visual commonsense immorality benchmark with more general and extensive immoral visual contents. Codes and dataset are available at https://github.com/ku-vai/Zero-shot-Visual-Commonsense-Immorality-Prediction. Note that this paper might contain images and descriptions that are offensive in nature.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"1 1","pages":"320"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.05521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence is currently powering diverse real-world applications. These applications have shown promising performance, but raise complicated ethical issues, i.e. how to embed ethics to make AI applications behave morally. One way toward moral AI systems is by imitating human prosocial behavior and encouraging some form of good behavior in systems. However, learning such normative ethics (especially from images) is challenging mainly due to a lack of data and labeling complexity. Here, we propose a model that predicts visual commonsense immorality in a zero-shot manner. We train our model with an ETHICS dataset (a pair of text and morality annotation) via a CLIP-based image-text joint embedding. In a testing phase, the immorality of an unseen image is predicted. We evaluate our model with existing moral/immoral image datasets and show fair prediction performance consistent with human intuitions. Further, we create a visual commonsense immorality benchmark with more general and extensive immoral visual contents. Codes and dataset are available at https://github.com/ku-vai/Zero-shot-Visual-Commonsense-Immorality-Prediction. Note that this paper might contain images and descriptions that are offensive in nature.
零射击视觉常识性不道德预测
人工智能目前正在推动各种现实世界的应用。这些应用程序显示出有希望的性能,但也提出了复杂的伦理问题,即如何嵌入伦理使人工智能应用程序合乎道德。建立道德人工智能系统的一种方法是模仿人类的亲社会行为,并鼓励系统中的某种形式的良好行为。然而,学习这样的规范伦理(尤其是从图像中)是具有挑战性的,主要是由于缺乏数据和标签的复杂性。在这里,我们提出了一个模型,以零射击的方式预测视觉常识不道德。我们使用伦理数据集(一对文本和道德注释)通过基于clip的图像-文本联合嵌入训练我们的模型。在测试阶段,对未见图像的不道德进行预测。我们用现有的道德/不道德图像数据集评估我们的模型,并显示出与人类直觉一致的公平预测性能。此外,我们创建了一个视觉常识性的不道德基准,更普遍和广泛的不道德视觉内容。代码和数据集可在https://github.com/ku-vai/Zero-shot-Visual-Commonsense-Immorality-Prediction上获得。请注意,本文可能包含具有攻击性的图像和描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信