Symmetric fractional order reduction method with L1 scheme on graded mesh for time fractional nonlocal diffusion-wave equation of Kirchhoff type

Pari J. Kundaliya, Sudhakar Chaudhary
{"title":"Symmetric fractional order reduction method with L1 scheme on graded mesh for time fractional nonlocal diffusion-wave equation of Kirchhoff type","authors":"Pari J. Kundaliya, Sudhakar Chaudhary","doi":"10.48550/arXiv.2301.01670","DOIUrl":null,"url":null,"abstract":"In this article, we propose a linearized fully-discrete scheme for solving a time fractional nonlocal diffusion-wave equation of Kirchhoff type. The scheme is established by using the finite element method in space and the $L1$ scheme in time. We derive the $\\alpha$-robust \\textit{a priori} bound and \\textit{a priori} error estimate for the fully-discrete solution in $L^{\\infty}\\big(H^1_0(\\Omega)\\big)$ norm, where $\\alpha \\in (1,2)$ is the order of time fractional derivative. Finally, we perform some numerical experiments to verify the theoretical results.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose a linearized fully-discrete scheme for solving a time fractional nonlocal diffusion-wave equation of Kirchhoff type. The scheme is established by using the finite element method in space and the $L1$ scheme in time. We derive the $\alpha$-robust \textit{a priori} bound and \textit{a priori} error estimate for the fully-discrete solution in $L^{\infty}\big(H^1_0(\Omega)\big)$ norm, where $\alpha \in (1,2)$ is the order of time fractional derivative. Finally, we perform some numerical experiments to verify the theoretical results.
Kirchhoff型时间分数阶非局部扩散波方程的梯度网格L1格式对称分数阶约简方法
本文给出了求解时间分数阶Kirchhoff型非局部扩散波方程的线性化全离散格式。该方案在空间上采用有限元法,在时间上采用$L1$方案。我们推导了$L^{\infty}\big(H^1_0(\Omega)\big)$范数下全离散解的$\alpha$ -鲁棒\textit{先验的}界和\textit{先验的}误差估计,其中$\alpha \in (1,2)$为时间阶分数阶导数。最后,通过数值实验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信