{"title":"First Principle Study of Electronic Property of Doped/Undoped Graphene Structure for Interconnect Application","authors":"Vijay Rao Kumbhare, P. Paltani, M. Majumder","doi":"10.1109/NANO51122.2021.9514343","DOIUrl":null,"url":null,"abstract":"Emerging trends in the VLSI industry open a new way to explore the electronic behavior of the novel graphene due to fundamental limitations (physical and geometrical) of silicon CMOS technology. In order to accomplish it, the structural behavior of graphene under the influence of different intercalation doping materials is investigated using spin-polarized density functional theory (DFT) and nonequilibrium Green's function (NEGF). This work considers three different graphene structures such as an armchair, zigzag, and (3, 2) chiral configurations to demonstrate the transmission spectrum for doped and pristine multi-layered graphene nanoribbon (MLGNR). Further, pristine graphene is compared with the different intercalation doped materials such as Lithium (Li), Ferric chloride (FeCl3), Arsenic pentafluoride (AsF5), and Molybdenum pentachloride (MoCl5) to observe the transmission in the central channel region. It is evident that the intercalated Li doping on zigzag MLGNR provides 71.60%, 95.12%, and 88.23% higher transmission in the central channel region compared to pristine zigzag, armchair, and (3, 2) chiral structures, respectively. Therefore, it is observed that intercalation doping is a suitable choice to improve the metallic nature of MLGNR structure that can be a better choice for nanoscale interconnect application.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"1 1","pages":"77-80"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging trends in the VLSI industry open a new way to explore the electronic behavior of the novel graphene due to fundamental limitations (physical and geometrical) of silicon CMOS technology. In order to accomplish it, the structural behavior of graphene under the influence of different intercalation doping materials is investigated using spin-polarized density functional theory (DFT) and nonequilibrium Green's function (NEGF). This work considers three different graphene structures such as an armchair, zigzag, and (3, 2) chiral configurations to demonstrate the transmission spectrum for doped and pristine multi-layered graphene nanoribbon (MLGNR). Further, pristine graphene is compared with the different intercalation doped materials such as Lithium (Li), Ferric chloride (FeCl3), Arsenic pentafluoride (AsF5), and Molybdenum pentachloride (MoCl5) to observe the transmission in the central channel region. It is evident that the intercalated Li doping on zigzag MLGNR provides 71.60%, 95.12%, and 88.23% higher transmission in the central channel region compared to pristine zigzag, armchair, and (3, 2) chiral structures, respectively. Therefore, it is observed that intercalation doping is a suitable choice to improve the metallic nature of MLGNR structure that can be a better choice for nanoscale interconnect application.