A New Processing Method to Segment Olive Trees and Detect Xylella Fastidiosa in UAVs Multispectral Images

F. Adamo, F. Attivissimo, A. Nisio, M. Ragolia, M. Scarpetta
{"title":"A New Processing Method to Segment Olive Trees and Detect Xylella Fastidiosa in UAVs Multispectral Images","authors":"F. Adamo, F. Attivissimo, A. Nisio, M. Ragolia, M. Scarpetta","doi":"10.1109/I2MTC50364.2021.9459835","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for fast detection of Xylella fastidiosa bacterium symptoms on olive trees is presented. Images are taken using a multirotor unmanned aerial vehicle (UAV) equipped with a multispectral camera. A new segmentation algorithm to recognize trees is applied and images are then classified using linear discriminant analysis. It has been applied to selected sites in the Southern Italy where multispectral images of olive orchards have been acquired. The developed algorithm seems to be very promising thanks to its high mean Sørensen-Dice similarity coefficient, which demonstrates the feasibility of a correct tree individuation, and its sensitivity in detecting infected trees.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"19 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new approach for fast detection of Xylella fastidiosa bacterium symptoms on olive trees is presented. Images are taken using a multirotor unmanned aerial vehicle (UAV) equipped with a multispectral camera. A new segmentation algorithm to recognize trees is applied and images are then classified using linear discriminant analysis. It has been applied to selected sites in the Southern Italy where multispectral images of olive orchards have been acquired. The developed algorithm seems to be very promising thanks to its high mean Sørensen-Dice similarity coefficient, which demonstrates the feasibility of a correct tree individuation, and its sensitivity in detecting infected trees.
无人机多光谱图像中橄榄树分割和苛养木杆菌检测的新处理方法
本文介绍了一种快速检测橄榄树苛养木杆菌症状的新方法。使用配备多光谱相机的多旋翼无人机(UAV)拍摄图像。采用一种新的分割算法识别树,然后使用线性判别分析进行图像分类。它已被应用于意大利南部的选定地点,那里已经获得了橄榄园的多光谱图像。由于该算法具有较高的平均Sørensen-Dice相似系数,这表明了正确的树个性化的可行性,以及它在检测感染树方面的敏感性,因此该算法似乎非常有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信