Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot

Chun-Yu Chai, Wen-Hsiao Peng, Shiao-Li Tsao
{"title":"Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot","authors":"Chun-Yu Chai, Wen-Hsiao Peng, Shiao-Li Tsao","doi":"10.1109/ICRA40945.2020.9197356","DOIUrl":null,"url":null,"abstract":"Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"2372-2378"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.
基于低成本桌面机器人的自适应未知物体重排
对象重排规划研究通常考虑已知对象。一些基于学习的方法可以在单步交互后预测未知物体的运动,但需要手动生成中间目标来完成重排任务。在这项工作中,我们提出了一个未知对象重排的框架。我们的系统首先通过少量的识别动作对对象进行建模,并在任务执行过程中调整模型参数。我们基于一个低成本的桌面机器人(180美元以下)实现了所提出的框架,以展示使用物理引擎辅助动作预测的优势。实验结果表明,在运行我们的自适应学习程序后,机器人可以在桌面环境中使用平均5个离散的推动成功地排列新物体,并满足精确的3.5 cm平移和5°旋转标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信