Sensitivity Analysis of ARC Criticalities in Stochastic Activity Networks

P. Wan, M. Fu
{"title":"Sensitivity Analysis of ARC Criticalities in Stochastic Activity Networks","authors":"P. Wan, M. Fu","doi":"10.1109/WSC48552.2020.9384015","DOIUrl":null,"url":null,"abstract":"Using Monte Carlo simulation, this paper proposes a new algorithm for estimating the arc criticalities of stochastic activity networks. The algorithm is based on the following result: given the length of all arcs in a network except for the one arc of interest, which is on the critical path (longest path) if and only if its length is greater than a threshold. Therefore, the new algorithm is named Threshold Arc Criticality (TAC). By applying Infinitesimal Perturbation Analysis (IPA) to TAC, an unbiased estimator of the stochastic derivative of the arc criticalities with respect to parameters of arc length distributions can be derived. With a valid estimator of stochastic derivative of arc criticalities, sensitivity analysis of arc criticalities is carried out via simulation of a small test network.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"19 1","pages":"2911-2922"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using Monte Carlo simulation, this paper proposes a new algorithm for estimating the arc criticalities of stochastic activity networks. The algorithm is based on the following result: given the length of all arcs in a network except for the one arc of interest, which is on the critical path (longest path) if and only if its length is greater than a threshold. Therefore, the new algorithm is named Threshold Arc Criticality (TAC). By applying Infinitesimal Perturbation Analysis (IPA) to TAC, an unbiased estimator of the stochastic derivative of the arc criticalities with respect to parameters of arc length distributions can be derived. With a valid estimator of stochastic derivative of arc criticalities, sensitivity analysis of arc criticalities is carried out via simulation of a small test network.
随机活动网络中ARC临界的敏感性分析
利用蒙特卡罗模拟,提出了一种估计随机活动网络电弧临界度的新算法。该算法基于以下结果:给定网络中除了一个感兴趣的弧以外的所有弧的长度,该弧位于关键路径(最长路径)上,当且仅当其长度大于阈值。因此,新算法被命名为阈值弧临界性(TAC)。将无穷小摄动分析(IPA)应用于TAC,可以得到弧临界性随弧长分布参数的随机导数的无偏估计。利用电弧临界随机导数的有效估计量,通过小型试验网络的仿真,对电弧临界进行了灵敏度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信