Incorporation of the intensive and extensive entropy contributions in the disk intersection theory of a hard disk system

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
V. Pergamenshchik
{"title":"Incorporation of the intensive and extensive entropy contributions in the disk intersection theory of a hard disk system","authors":"V. Pergamenshchik","doi":"10.5488/cmp.26.33501","DOIUrl":null,"url":null,"abstract":"The one-body free volume, which determines the entropy of a hard disk system, has extensive (cavity) and intensive (cell) contributions. So far these contributions have not been unified and considered separately. The presented theory incorporates both contributions, and their sum is shown to determine the free volume and partition function. The approach is based on multiple intersections of the circles concentric with the disks but of twice larger radius. The result is exact formulae for the extensive and intensive entropy contributions in terms of the intersections of just two, three, four, and five circles. The method has an important advantage for applications in numerical simulations: the formulae enable one to convert the disk coordinates into the entropy contribution directly without any additional geometric construction. The theory can be straightforwardly applied to a system of hard spheres.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/cmp.26.33501","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The one-body free volume, which determines the entropy of a hard disk system, has extensive (cavity) and intensive (cell) contributions. So far these contributions have not been unified and considered separately. The presented theory incorporates both contributions, and their sum is shown to determine the free volume and partition function. The approach is based on multiple intersections of the circles concentric with the disks but of twice larger radius. The result is exact formulae for the extensive and intensive entropy contributions in terms of the intersections of just two, three, four, and five circles. The method has an important advantage for applications in numerical simulations: the formulae enable one to convert the disk coordinates into the entropy contribution directly without any additional geometric construction. The theory can be straightforwardly applied to a system of hard spheres.
在硬盘系统的磁盘交叉理论中引入密集熵和广泛熵的贡献
决定硬盘系统熵的单体自由体积具有广泛(空腔)和密集(细胞)的贡献。到目前为止,这些贡献还没有统一起来单独考虑。所提出的理论结合了这两种贡献,它们的总和决定了自由体积和配分函数。该方法基于与圆盘同心但半径大两倍的圆的多次相交。结果是精确的公式为广泛和密集的熵贡献在交集方面,只有两个,三个,四个,和五个圆。该方法在数值模拟应用中有一个重要的优点:该公式使人们能够直接将磁盘坐标转换为熵贡献,而无需任何额外的几何构造。这个理论可以直接应用于硬球系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信