Decentralized forecasting of wind energy generation with an adaptive machine learning approach to support ancillary grid services

Q2 Earth and Planetary Sciences
L. Holicki, Manuel Dröse, G. Schürmann, M. Letzel
{"title":"Decentralized forecasting of wind energy generation with an adaptive machine learning approach to support ancillary grid services","authors":"L. Holicki, Manuel Dröse, G. Schürmann, M. Letzel","doi":"10.5194/asr-20-81-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We report on an approach to distributed wind power forecasting,\nwhich supports wind energy integration in power grid operation during\nexceptional and critical situations. Forecasts are generated on-site the\nwind power plant (WPP) in order to provide blackout-robust data transmission\ndirectly from the WPP to the grid operator. An adaptively trained\nforecasting model uses locally available sensor data to predict the\navailable active power (AAP) signal in a probabilistic fashion. A forecast\ngenerated off-site based on numerical weather prediction (NWP) is deposited\nand combined on-site the WPP with the locally generated forecast. We\nevaluate the performance of the method in a case study and find that the\nlocally generated forecast significantly improves forecast reliability for a\nshort-term horizon, which is highly relevant for enabling power reserve\nprovision from WPPs.\n","PeriodicalId":30081,"journal":{"name":"Advances in Science and Research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/asr-20-81-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We report on an approach to distributed wind power forecasting, which supports wind energy integration in power grid operation during exceptional and critical situations. Forecasts are generated on-site the wind power plant (WPP) in order to provide blackout-robust data transmission directly from the WPP to the grid operator. An adaptively trained forecasting model uses locally available sensor data to predict the available active power (AAP) signal in a probabilistic fashion. A forecast generated off-site based on numerical weather prediction (NWP) is deposited and combined on-site the WPP with the locally generated forecast. We evaluate the performance of the method in a case study and find that the locally generated forecast significantly improves forecast reliability for a short-term horizon, which is highly relevant for enabling power reserve provision from WPPs.
用自适应机器学习方法支持辅助电网服务的风能发电分散预测
摘要我们报告了一种分布式风电预测方法,该方法支持在特殊和关键情况下电网运行中的风能整合。预测是在风力发电厂(WPP)现场生成的,以便直接从WPP向电网运营商提供停电可靠的数据传输。自适应训练的预测模型使用本地可用的传感器数据以概率方式预测可用的有功功率(AAP)信号。基于数值天气预报(NWP)在场外生成的预报被储存起来,并将现场的数值天气预报与本地生成的预报结合起来。我们在一个案例研究中评估了该方法的性能,发现本地生成的预测显著提高了短期预测的可靠性,这与wpp实现电力储备供应高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Research
Advances in Science and Research Earth and Planetary Sciences-Geophysics
CiteScore
4.10
自引率
0.00%
发文量
13
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信