E. González‐Olivares, Adolfo Mosquera-Aguilar, Paulo C. Tintinago-Ruiz, A. Rojas‐Palma
{"title":"Bifurcations in a Leslie-Gower Type predator-prey Model with a rational non-Monotonic Functional response","authors":"E. González‐Olivares, Adolfo Mosquera-Aguilar, Paulo C. Tintinago-Ruiz, A. Rojas‐Palma","doi":"10.3846/mma.2022.15528","DOIUrl":null,"url":null,"abstract":"A Leslie-Gower type predator-prey model including group defense formation is analyzed. This phenomenon, described by a non-monotonic function originates interesting dynamics; positiveness, boundedness, permanence of solutions, and existence of up to three positive equilibria are established. The solutions are highly sensitive to initial conditions since there exists a separatrix curve dividing their behavior. Two near trajectories can have far omega-limit sets. The weakness of a singularity is established showing two limit cycles can exist. Numerical simulations endorse the analytical outcomes.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"7 1","pages":"510-532"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.15528","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A Leslie-Gower type predator-prey model including group defense formation is analyzed. This phenomenon, described by a non-monotonic function originates interesting dynamics; positiveness, boundedness, permanence of solutions, and existence of up to three positive equilibria are established. The solutions are highly sensitive to initial conditions since there exists a separatrix curve dividing their behavior. Two near trajectories can have far omega-limit sets. The weakness of a singularity is established showing two limit cycles can exist. Numerical simulations endorse the analytical outcomes.