Morse potential in relativistic contexts from generalized momentum operator: Schottky anomalies, Pekeris approximation and mapping

I. Gomez, E. S. Santos, O. Abla
{"title":"Morse potential in relativistic contexts from generalized momentum operator: Schottky anomalies, Pekeris approximation and mapping","authors":"I. Gomez, E. S. Santos, O. Abla","doi":"10.1142/S0217732321501406","DOIUrl":null,"url":null,"abstract":"In this work we explore a generalization of the Dirac and Klein-Gordon (KG) oscillators, provided with a deformed linear momentum inspired in nonextensive statistics, that gives place to the Morse potential in relativistic contexts by first principles. In the (1+1)-dimensional case the relativistic oscillators are mapped into the quantum Morse potential. Using the Pekeris approximation, in the (3+1)-dimensional case we study the thermodynamics of the S-waves states (l=0) of the H2, LiH, HCl and CO molecules (in the non-relativistic limit) and of a relativistic electron, where Schottky anomalies (due to the finiteness of the Morse spectrum) and spin contributions to the heat capacity are reported. By revisiting a generalized Pekeris approximation, we provide a mapping from (3+1)-dimensional Dirac and KG equations with a spherical potential to an associated one-dimensional Schr\\\"odinger-like equation, and we obtain the family of potentials for which this mapping corresponds to a Schr\\\"odinger equation with non-minimal coupling.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217732321501406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work we explore a generalization of the Dirac and Klein-Gordon (KG) oscillators, provided with a deformed linear momentum inspired in nonextensive statistics, that gives place to the Morse potential in relativistic contexts by first principles. In the (1+1)-dimensional case the relativistic oscillators are mapped into the quantum Morse potential. Using the Pekeris approximation, in the (3+1)-dimensional case we study the thermodynamics of the S-waves states (l=0) of the H2, LiH, HCl and CO molecules (in the non-relativistic limit) and of a relativistic electron, where Schottky anomalies (due to the finiteness of the Morse spectrum) and spin contributions to the heat capacity are reported. By revisiting a generalized Pekeris approximation, we provide a mapping from (3+1)-dimensional Dirac and KG equations with a spherical potential to an associated one-dimensional Schr\"odinger-like equation, and we obtain the family of potentials for which this mapping corresponds to a Schr\"odinger equation with non-minimal coupling.
广义动量算符在相对论背景下的Morse势:Schottky异常,Pekeris近似和映射
在这项工作中,我们探索了狄拉克和克莱因-戈登(KG)振子的推广,提供了在非广泛统计中启发的变形线性动量,在相对论背景下由第一原理取代莫尔斯势。在(1+1)维情况下,相对论性振子被映射到量子莫尔斯势中。利用Pekeris近似,在(3+1)维的情况下,我们研究了H2、LiH、HCl和CO分子(在非相对论极限下)和相对论电子的s波态(l=0)的热力学,其中报道了肖特基异常(由于莫尔斯谱的有限性)和自旋对热容的贡献。通过对广义Pekeris近似的重新考察,我们提供了一个从(3+1)维具有球面势的Dirac方程和KG方程到相关的一维Schr\ odinger方程的映射,并得到了该映射对应于具有非极小耦合的Schr\ odinger方程的势族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信