Interface Control of Tetragonal Ferroelectric Phase in Ultrathin Si-Doped HfO 2 Epitaxial Films

Tao Li, Juncai Dong, Nian Zhang, Zicheng Wen, Zhenzhong Sun, Y. Hai, Huanyu Liu, N. Tamura, S. Mi, Shaodong Cheng, Chuansheng Ma, Y. He, Shanming Ke, Haitao Huang, Yongge Cao
{"title":"Interface Control of Tetragonal Ferroelectric Phase in Ultrathin Si-Doped HfO 2 Epitaxial Films","authors":"Tao Li, Juncai Dong, Nian Zhang, Zicheng Wen, Zhenzhong Sun, Y. Hai, Huanyu Liu, N. Tamura, S. Mi, Shaodong Cheng, Chuansheng Ma, Y. He, Shanming Ke, Haitao Huang, Yongge Cao","doi":"10.2139/ssrn.3581339","DOIUrl":null,"url":null,"abstract":"Nanoscaled HfO2-based ferroelectric thin films are a favored candidate for the integration of next-generation memory and logic devices. The unique advantage is ferroelectric polarization becomes more robust than the traditional perovskite ferroelectrics as the size is reduced. Understanding and controlling the ferroelectricity requires high-quality epitaxial thin films to explore intrinsic ferroelectric mechanism and evaluate device applications. Here, we report a semicoherent growth of ITO as a bottom electrode that enables genuine ultrathin epitaxial films of Si-doped HfO2 on YSZ[001]/[110]/[111] substrates. The films, which are under epitaxial compressive strain, display large ferroelectric polarization values up to 42 μC/cm2 and do not need wake-up cycling. Structural characterization reveals the presence of crystalline domains with short axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180o. Ferroelectric polarization can be controlled by ITO surface polarity which easily exploiting the interfacial valance mismatch to influence the electrostatic potential across the interface. These findings have implications for our understanding of ferroelectric switching and offer easy method to manipulate domain reversal state in HfO2-based ferroelectric materials.","PeriodicalId":89488,"journal":{"name":"The electronic journal of human sexuality","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The electronic journal of human sexuality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3581339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nanoscaled HfO2-based ferroelectric thin films are a favored candidate for the integration of next-generation memory and logic devices. The unique advantage is ferroelectric polarization becomes more robust than the traditional perovskite ferroelectrics as the size is reduced. Understanding and controlling the ferroelectricity requires high-quality epitaxial thin films to explore intrinsic ferroelectric mechanism and evaluate device applications. Here, we report a semicoherent growth of ITO as a bottom electrode that enables genuine ultrathin epitaxial films of Si-doped HfO2 on YSZ[001]/[110]/[111] substrates. The films, which are under epitaxial compressive strain, display large ferroelectric polarization values up to 42 μC/cm2 and do not need wake-up cycling. Structural characterization reveals the presence of crystalline domains with short axis of the tetragonal structure oriented perpendicular to the substrate. Using piezoforce microscopy, polar domains can be written and read and are reversibly switched with a phase change of 180o. Ferroelectric polarization can be controlled by ITO surface polarity which easily exploiting the interfacial valance mismatch to influence the electrostatic potential across the interface. These findings have implications for our understanding of ferroelectric switching and offer easy method to manipulate domain reversal state in HfO2-based ferroelectric materials.
超薄si掺杂HfO外延膜中四方铁电相的界面控制
纳米级hfo2基铁电薄膜是集成下一代存储和逻辑器件的理想选择。独特的优点是,随着尺寸的减小,铁电极化比传统的钙钛矿铁电体更加坚固。了解和控制铁电性需要高质量的外延薄膜来探索铁电内在机制和评估器件应用。在这里,我们报道了ITO作为底部电极的半相关生长,使si掺杂HfO2在YSZ[001]/[110]/[111]衬底上实现了真正的超薄外延膜。在外延压缩应变下,薄膜的铁电极化值高达42 μC/cm2,且不需要唤醒循环。结构表征揭示了具有垂直于衬底的四方结构短轴的晶体域的存在。使用压电显微镜,极性域可以写入和读取,并可逆地切换180度的相变。铁电极化可以通过ITO表面极性来控制,这种极性很容易利用界面价错来影响界面上的静电势。这些发现有助于我们对铁电开关的理解,并为控制hfo2基铁电材料的畴反转状态提供了简单的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信