Validation and Extension of Soil Response Framework for Fatigue Analysis of Offshore Wells and Piles

A. Zakeri, H. Sturm, P. Jeanjean
{"title":"Validation and Extension of Soil Response Framework for Fatigue Analysis of Offshore Wells and Piles","authors":"A. Zakeri, H. Sturm, P. Jeanjean","doi":"10.4043/29236-MS","DOIUrl":null,"url":null,"abstract":"\n A soil response framework for use in fatigue assessment of offshore wells and piles is presented. The framework covers clay and sand soil types. It was developed through comprehensive series of physical testing and numerical simulations. It hinges on determination of the unload-reload secant stiffness response of soils degraded under cyclic fatigue loading and reaching a steady-state condition. The framework comprises two calibrated approaches: spring-only and spring-dashpot. The latter is more appropriate when dynamic response of a structure needs to be more accurately determined through for time-domain analysis. Efficacy and validation of the framework are demonstrated through three (3) field monitoring programs involving offshore wells installed in ground conditions ranging from soft clays typically encountered in deepwater to layered sands and clays in shallow waters. Further validation is provided by presenting results from an extensive laboratory testing program involving nine (9) soil samples taken from various geographical locations against the key relationships of the framework. The laboratory tests were conducted in a novel apparatus developed specifically for obtaining soil resistance–displacement relationship for input to fatigue analysis.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29236-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A soil response framework for use in fatigue assessment of offshore wells and piles is presented. The framework covers clay and sand soil types. It was developed through comprehensive series of physical testing and numerical simulations. It hinges on determination of the unload-reload secant stiffness response of soils degraded under cyclic fatigue loading and reaching a steady-state condition. The framework comprises two calibrated approaches: spring-only and spring-dashpot. The latter is more appropriate when dynamic response of a structure needs to be more accurately determined through for time-domain analysis. Efficacy and validation of the framework are demonstrated through three (3) field monitoring programs involving offshore wells installed in ground conditions ranging from soft clays typically encountered in deepwater to layered sands and clays in shallow waters. Further validation is provided by presenting results from an extensive laboratory testing program involving nine (9) soil samples taken from various geographical locations against the key relationships of the framework. The laboratory tests were conducted in a novel apparatus developed specifically for obtaining soil resistance–displacement relationship for input to fatigue analysis.
海上井桩疲劳分析土体响应框架的验证与推广
提出了一种用于海上井桩疲劳评估的土体响应框架。该框架涵盖了粘土和砂土类型。它是通过一系列全面的物理测试和数值模拟开发的。其关键在于确定退化土在循环疲劳荷载作用下达到稳态状态时的卸载-再加载割线刚度响应。该框架包括两种校准方法:纯弹簧和弹簧阻尼器。当需要通过时域分析更精确地确定结构的动力响应时,后者更为适用。该框架的有效性和有效性通过三(3)个现场监测项目得到验证,这些项目涉及安装在地面条件下的海上油井,从深水中常见的软粘土到浅水中的层状砂和粘土。通过展示从不同地理位置采集的9个土壤样本的广泛实验室测试程序的结果,进一步验证了框架的关键关系。实验室试验是在一种专门为获得土壤阻力-位移关系而开发的新型仪器中进行的,用于疲劳分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信