Visual Attention in Omnidirectional Video for Virtual Reality Applications

C. Ozcinar, A. Smolic
{"title":"Visual Attention in Omnidirectional Video for Virtual Reality Applications","authors":"C. Ozcinar, A. Smolic","doi":"10.1109/QoMEX.2018.8463418","DOIUrl":null,"url":null,"abstract":"Understanding of visual attention is crucial for omnidirectional video (ODV) viewed for instance with a head-mounted display (HMD), where only a fraction of an ODV is rendered at a time. Transmission and rendering of ODV can be optimized by understanding how viewers consume a given ODV in virtual reality (VR) applications. In order to predict video regions that might draw the attention of viewers, saliency maps can be estimated by using computational visual attention models. As no such model currently exists for ODV, but given the importance for emerging ODV applications, we create a new visual attention user dataset for ODV, investigate behavior of viewers when consuming the content, and analyze the prediction performance of state-of-the-art visual attention models. Our developed test-bed and dataset will be publicly available with this paper, to stimulate and support research on ODV.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2018.8463418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

Understanding of visual attention is crucial for omnidirectional video (ODV) viewed for instance with a head-mounted display (HMD), where only a fraction of an ODV is rendered at a time. Transmission and rendering of ODV can be optimized by understanding how viewers consume a given ODV in virtual reality (VR) applications. In order to predict video regions that might draw the attention of viewers, saliency maps can be estimated by using computational visual attention models. As no such model currently exists for ODV, but given the importance for emerging ODV applications, we create a new visual attention user dataset for ODV, investigate behavior of viewers when consuming the content, and analyze the prediction performance of state-of-the-art visual attention models. Our developed test-bed and dataset will be publicly available with this paper, to stimulate and support research on ODV.
面向虚拟现实应用的全向视频中的视觉注意
理解视觉注意力对于观看全方位视频(ODV)至关重要,例如头戴式显示器(HMD),一次只能呈现一小部分ODV。通过了解观众如何在虚拟现实(VR)应用程序中使用给定的ODV,可以优化ODV的传输和渲染。为了预测可能吸引观众注意的视频区域,可以使用计算视觉注意模型来估计显着性地图。由于目前还没有这样的ODV模型,但考虑到新兴ODV应用的重要性,我们为ODV创建了一个新的视觉注意力用户数据集,调查了观众在消费内容时的行为,并分析了最先进的视觉注意力模型的预测性能。我们开发的测试平台和数据集将与本文一起公开,以刺激和支持ODV的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信