The Topology of Projective Codes and the Distribution of Zeros of Odd Maps

Pub Date : 2021-06-28 DOI:10.1307/mmj/20216170
Henry Adams, Johnathan Bush, F. Frick
{"title":"The Topology of Projective Codes and the Distribution of Zeros of Odd Maps","authors":"Henry Adams, Johnathan Bush, F. Frick","doi":"10.1307/mmj/20216170","DOIUrl":null,"url":null,"abstract":"We show that the size of codes in projective space controls structural results for zeros of odd maps from spheres to Euclidean space. In fact, this relation is given through the topology of the space of probability measures on the sphere whose supports have diameter bounded by some specific parameter. Our main result is a generalization of the Borsuk--Ulam theorem, and we derive four consequences of it: (i) We give a new proof of a result of Simonyi and Tardos on topological lower bounds for the circular chromatic number of a graph; (ii) we study generic embeddings of spheres into Euclidean space and show that projective codes give quantitative bounds for a measure of genericity of sphere embeddings; and we prove generalizations of (iii) the Ham Sandwich theorem and (iv) the Lyusternik--Shnirel'man--Borsuk covering theorem for the case where the number of measures or sets in a covering, respectively, may exceed the ambient dimension.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We show that the size of codes in projective space controls structural results for zeros of odd maps from spheres to Euclidean space. In fact, this relation is given through the topology of the space of probability measures on the sphere whose supports have diameter bounded by some specific parameter. Our main result is a generalization of the Borsuk--Ulam theorem, and we derive four consequences of it: (i) We give a new proof of a result of Simonyi and Tardos on topological lower bounds for the circular chromatic number of a graph; (ii) we study generic embeddings of spheres into Euclidean space and show that projective codes give quantitative bounds for a measure of genericity of sphere embeddings; and we prove generalizations of (iii) the Ham Sandwich theorem and (iv) the Lyusternik--Shnirel'man--Borsuk covering theorem for the case where the number of measures or sets in a covering, respectively, may exceed the ambient dimension.
分享
查看原文
投影码的拓扑与奇映射的零分布
我们证明了射影空间中码的大小控制着从球到欧氏空间的奇映射的零的结构结果。实际上,这种关系是通过球面上的概率测度空间的拓扑来给出的,球面的支承直径有特定的参数限定。我们的主要成果是对Borsuk—Ulam定理的推广,并得到了它的四个结果:(1)给出了simmonyi和Tardos关于图的圆色数拓扑下界的一个新的证明;(ii)研究了球面在欧几里得空间中的一般嵌入,并证明了投影码给出了球面嵌入的一般测度的定量界;并且我们证明了(iii) Ham Sandwich定理和(iv) Lyusternik—Shnirel’man—Borsuk覆盖定理的推广,分别适用于覆盖中的测度数或集合数可能超过环境维数的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信