Fast Texture Synthesis via Pseudo Optimizer

Wu Shi, Y. Qiao
{"title":"Fast Texture Synthesis via Pseudo Optimizer","authors":"Wu Shi, Y. Qiao","doi":"10.1109/CVPR42600.2020.00554","DOIUrl":null,"url":null,"abstract":"Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forward networks, but at the cost of scalability. diversity or quality. We propose a new efficient method that aims to simulate the optimization process while retains most of the properties. Our method takes a noise image and the gradients from a descriptor network as inputs, and synthesize a refined image with respect to the target image. The proposed method can synthesize images with better quality and diversity than the other fast synthesis methods do. Moreover, our method trained on a large scale dataset can generalize to synthesize unseen textures.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"25 1","pages":"5497-5506"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.00554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forward networks, but at the cost of scalability. diversity or quality. We propose a new efficient method that aims to simulate the optimization process while retains most of the properties. Our method takes a noise image and the gradients from a descriptor network as inputs, and synthesize a refined image with respect to the target image. The proposed method can synthesize images with better quality and diversity than the other fast synthesis methods do. Moreover, our method trained on a large scale dataset can generalize to synthesize unseen textures.
通过伪优化器快速纹理合成
基于深度神经网络的纹理合成可以生成高质量、多样化的纹理。然而,它通常需要一个繁重的优化过程。下面的工作通过使用前馈网络加速了这一过程,但以可扩展性为代价。多样性或质量我们提出了一种新的高效方法,旨在模拟优化过程,同时保留大部分属性。我们的方法以噪声图像和描述子网络的梯度作为输入,相对于目标图像合成一个精细的图像。与其他快速合成方法相比,该方法合成的图像具有更好的质量和多样性。此外,我们的方法经过大规模数据集的训练,可以泛化到合成看不见的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信