Ruma Gupta, K. Jayachandran, J. Gamare, B. Rajeshwari, S. Gupta, J. Kamat
{"title":"Novel Electrochemical Synthesis of Polypyrrole/Ag Nanocomposite and Its Electrocatalytic Performance towards Hydrogen Peroxide Reduction","authors":"Ruma Gupta, K. Jayachandran, J. Gamare, B. Rajeshwari, S. Gupta, J. Kamat","doi":"10.1155/2015/149406","DOIUrl":null,"url":null,"abstract":"A simple electrochemical method of synthesis of polypyrrole/silver (PPy/Ag) nanocomposite is presented. The method is based on potentiodynamic polymerization of pyrrole followed by electrodeposition of silver employing a single potentiostatic pulse. The synthesized PPy film has embedded Ag nanocubes. The morphology and structure of the resulting nanocomposite were characterized by field emission scanning electron microscopy and X-ray diffraction. Electron paramagnetic resonance studies showed that silver nanoparticle deposition on polypyrrole leads to an increase in carrier density, indicative of enhanced conductivity of the resulting composite. Electrocatalytic performance of the prepared composite was examined for reduction of hydrogen peroxide and was compared with corresponding PPy film and bare glassy carbon electrode.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/149406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A simple electrochemical method of synthesis of polypyrrole/silver (PPy/Ag) nanocomposite is presented. The method is based on potentiodynamic polymerization of pyrrole followed by electrodeposition of silver employing a single potentiostatic pulse. The synthesized PPy film has embedded Ag nanocubes. The morphology and structure of the resulting nanocomposite were characterized by field emission scanning electron microscopy and X-ray diffraction. Electron paramagnetic resonance studies showed that silver nanoparticle deposition on polypyrrole leads to an increase in carrier density, indicative of enhanced conductivity of the resulting composite. Electrocatalytic performance of the prepared composite was examined for reduction of hydrogen peroxide and was compared with corresponding PPy film and bare glassy carbon electrode.