{"title":"Profinite Rigidity, Kleinian Groups, and the Cofinite Hopf Property","authors":"M. Bridson, A. Reid","doi":"10.1307/mmj/20217218","DOIUrl":null,"url":null,"abstract":"Let Γ be a non-elementary Kleinian group and H < Γ a finitely generated, proper subgroup. We prove that if Γ has finite co-volume, then the profinite completions of H and Γ are not isomorphic. If H has finite index in Γ, then there is a finite group onto which H maps but Γ does not. These results streamline the existing proofs that there exist full-sized groups that are profinitely rigid in the absolute sense. They build on a circle of ideas that can be used to distinguish among the profinite completions of subgroups of finite index in other contexts, e.g. limit groups. We construct new examples of profinitely rigid groups, including the fundamental group of the hyperbolic 3-manifold Vol(3) and of the 4-fold cyclic branched cover of the figure-eight knot. We also prove that if a lattice in PSL(2,C) is profinitely rigid, then so is its normalizer in PSL(2,C). Dedicated to Gopal Prasad on the occasion of his 75th birthday","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"16 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217218","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
Abstract
Let Γ be a non-elementary Kleinian group and H < Γ a finitely generated, proper subgroup. We prove that if Γ has finite co-volume, then the profinite completions of H and Γ are not isomorphic. If H has finite index in Γ, then there is a finite group onto which H maps but Γ does not. These results streamline the existing proofs that there exist full-sized groups that are profinitely rigid in the absolute sense. They build on a circle of ideas that can be used to distinguish among the profinite completions of subgroups of finite index in other contexts, e.g. limit groups. We construct new examples of profinitely rigid groups, including the fundamental group of the hyperbolic 3-manifold Vol(3) and of the 4-fold cyclic branched cover of the figure-eight knot. We also prove that if a lattice in PSL(2,C) is profinitely rigid, then so is its normalizer in PSL(2,C). Dedicated to Gopal Prasad on the occasion of his 75th birthday
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.