Performance improvement of basic particle swarm optimization algorithm by Lyapunov function modeling of fitness function

A. Acharya, A. Banerjee, K. Chattopadhyay
{"title":"Performance improvement of basic particle swarm optimization algorithm by Lyapunov function modeling of fitness function","authors":"A. Acharya, A. Banerjee, K. Chattopadhyay","doi":"10.1109/TENCON.2008.4766493","DOIUrl":null,"url":null,"abstract":"The paper presents a novel concept of improving the convergence speed and solution quality of particle swarm optimization algorithm by Lyapunov modeling of fitness function. Most of the fitness functions that appear in practice can be transformed into positive definite function by using some minor transformations and shifting the coordinates system in the multidimensional space. The paper demonstrates how these positive definite functions can be transformed to Lyapunov functions and as a consequence how the equation of motion of the particles gets altered to lead to a better convergence speed and superior solution quality compared to those of basic particle swarm optimization algorithm.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a novel concept of improving the convergence speed and solution quality of particle swarm optimization algorithm by Lyapunov modeling of fitness function. Most of the fitness functions that appear in practice can be transformed into positive definite function by using some minor transformations and shifting the coordinates system in the multidimensional space. The paper demonstrates how these positive definite functions can be transformed to Lyapunov functions and as a consequence how the equation of motion of the particles gets altered to lead to a better convergence speed and superior solution quality compared to those of basic particle swarm optimization algorithm.
基于适应度函数的Lyapunov函数建模改进基本粒子群优化算法性能
提出了一种利用适应度函数Lyapunov建模提高粒子群优化算法收敛速度和求解质量的新思路。在实践中出现的适应度函数,大多可以通过一些小的变换和变换多维空间中的坐标系,转化为正定函数。本文论证了如何将这些正定函数转化为Lyapunov函数,从而改变粒子的运动方程,使其收敛速度和求解质量优于基本粒子群优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信