Dual Passive Reactive Brain-Computer Interface: A Novel Approach to Human-Machine Symbiosis.

IF 0.1 0 LITERATURE
Childrens Literature Association Quarterly Pub Date : 2022-04-11 eCollection Date: 2022-01-01 DOI:10.3389/fnrgo.2022.824780
Frédéric Dehais, Simon Ladouce, Ludovic Darmet, Tran-Vu Nong, Giuseppe Ferraro, Juan Torre Tresols, Sébastien Velut, Patrice Labedan
{"title":"Dual Passive Reactive Brain-Computer Interface: A Novel Approach to Human-Machine Symbiosis.","authors":"Frédéric Dehais, Simon Ladouce, Ludovic Darmet, Tran-Vu Nong, Giuseppe Ferraro, Juan Torre Tresols, Sébastien Velut, Patrice Labedan","doi":"10.3389/fnrgo.2022.824780","DOIUrl":null,"url":null,"abstract":"<p><p>The present study proposes a novel concept of neuroadaptive technology, namely a dual passive-reactive Brain-Computer Interface (BCI), that enables bi-directional interaction between humans and machines. We have implemented such a system in a realistic flight simulator using the NextMind classification algorithms and framework to decode pilots' intention (reactive BCI) and to infer their level of attention (passive BCI). Twelve pilots used the reactive BCI to perform checklists along with an anti-collision radar monitoring task that was supervised by the passive BCI. The latter simulated an automatic avoidance maneuver when it detected that pilots missed an incoming collision. The reactive BCI reached 100% classification accuracy with a mean reaction time of 1.6 s when exclusively performing the checklist task. Accuracy was up to 98.5% with a mean reaction time of 2.5 s when pilots also had to fly the aircraft and monitor the anti-collision radar. The passive BCI achieved a <i>F</i><sub>1</sub>-score of 0.94. This first demonstration shows the potential of a dual BCI to improve human-machine teaming which could be applied to a variety of applications.</p>","PeriodicalId":40856,"journal":{"name":"Childrens Literature Association Quarterly","volume":"36 1","pages":"824780"},"PeriodicalIF":0.1000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Childrens Literature Association Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnrgo.2022.824780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"0","JCRName":"LITERATURE","Score":null,"Total":0}
引用次数: 0

Abstract

The present study proposes a novel concept of neuroadaptive technology, namely a dual passive-reactive Brain-Computer Interface (BCI), that enables bi-directional interaction between humans and machines. We have implemented such a system in a realistic flight simulator using the NextMind classification algorithms and framework to decode pilots' intention (reactive BCI) and to infer their level of attention (passive BCI). Twelve pilots used the reactive BCI to perform checklists along with an anti-collision radar monitoring task that was supervised by the passive BCI. The latter simulated an automatic avoidance maneuver when it detected that pilots missed an incoming collision. The reactive BCI reached 100% classification accuracy with a mean reaction time of 1.6 s when exclusively performing the checklist task. Accuracy was up to 98.5% with a mean reaction time of 2.5 s when pilots also had to fly the aircraft and monitor the anti-collision radar. The passive BCI achieved a F1-score of 0.94. This first demonstration shows the potential of a dual BCI to improve human-machine teaming which could be applied to a variety of applications.

双被动反应式脑机接口:人机共生的新方法。
本研究提出了一种新颖的神经自适应技术概念,即双被动反应式脑机接口(BCI),可实现人机之间的双向互动。我们利用 NextMind 分类算法和框架在逼真的飞行模拟器中实施了这样一个系统,以解码飞行员的意图(反应式 BCI)和推断他们的注意力水平(被动式 BCI)。12 名飞行员使用反应式 BCI 执行检查单以及由被动式 BCI 监督的防碰撞雷达监测任务。后者在检测到飞行员错过即将发生的碰撞时模拟自动避让动作。在专门执行检查表任务时,反应式 BCI 的分类准确率达到 100%,平均反应时间为 1.6 秒。当飞行员还必须驾驶飞机并监控防撞雷达时,准确率高达 98.5%,平均反应时间为 2.5 秒。被动 BCI 的 F1 分数为 0.94。这项首次演示显示了双 BCI 在改善人机协作方面的潜力,可应用于多种领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信