{"title":"SINE-derived short noncoding RNAs: their evolutionary origins, molecular mechanisms, and physiological significance","authors":"Rei Yoshimoto, Shinichi Nakagawa","doi":"10.3389/frnar.2023.1257775","DOIUrl":null,"url":null,"abstract":"Short Interspersed Elements (SINEs) comprise a significant portion of the genomes of higher eukaryotes, including humans and mice. This review focuses on SINE-derived noncoding RNAs (ncRNAs), particularly BC1, BC200, and 4.5SH RNA, which are expressed abundantly and in a species-specific manner. These ncRNAs seem to have independently evolved their functions during evolutionary processes: BC1 and BC200 have become cytoplasmic translation inhibitors, while 4.5SH RNA has developed into a nuclear ncRNA that regulates splicing. This review delves into the unique roles of these ncRNAs, with a special emphasis on the recently discovered splicing regulation function of 4.5SH RNA. Furthermore, we discuss their evolutionary trajectories and potential implications for understanding the complexities of gene regulation.","PeriodicalId":73105,"journal":{"name":"Frontiers in RNA research","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in RNA research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frnar.2023.1257775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Short Interspersed Elements (SINEs) comprise a significant portion of the genomes of higher eukaryotes, including humans and mice. This review focuses on SINE-derived noncoding RNAs (ncRNAs), particularly BC1, BC200, and 4.5SH RNA, which are expressed abundantly and in a species-specific manner. These ncRNAs seem to have independently evolved their functions during evolutionary processes: BC1 and BC200 have become cytoplasmic translation inhibitors, while 4.5SH RNA has developed into a nuclear ncRNA that regulates splicing. This review delves into the unique roles of these ncRNAs, with a special emphasis on the recently discovered splicing regulation function of 4.5SH RNA. Furthermore, we discuss their evolutionary trajectories and potential implications for understanding the complexities of gene regulation.