Fitting Intravoxel Incoherent Motion Model to Diffusion MR Signals of the Human Breast Tissue using Particle Swarm Optimization

IF 2.2 Q1 MATHEMATICS, APPLIED
G. Ertas
{"title":"Fitting Intravoxel Incoherent Motion Model to Diffusion MR Signals of the Human Breast Tissue using Particle Swarm Optimization","authors":"G. Ertas","doi":"10.11121/IJOCTA.01.2019.00642","DOIUrl":null,"url":null,"abstract":"Intravoxel incoherent motion (IVIM) modeling offers the parameters f, D and D* as biomarkers for different lesion types and cancer stages from diffusion MR signals. Challenges with the available optimization algorithms in fitting the model to the signals motive new studies for improved parameter estimations. In this study, one thousand value sets of f, D, D* for human breast are assembled and used to generate five thousand diffusion MR signals considering noise-free and noisy situations exhibiting signal-to-noise ratios (SNR) of 20, 40, 60 and 80. The estimates of f, D, D* are obtained using Levenberg-Marquardt (LM), trust-region (TR) and particle swarm (PS) algorithms. On average, the algorithms provide the highest fitting performance for the noise-free signals (R2adj=1.000) and great fitting performances on the noisy signals with SNR>20 (R2adj>0.988). TR algorithm performs slightly better for SNR=20 (R2adj=0.947). TR and PS algorithms achieve the highest parameter estimation performance for all the parameters while LM algorithm reveals the highest performance for f and D only on the noise-free signals (r=1.00). For the noisy signals, performances increase while SNR increases. All algorithms accomplish poor performances for D* (r=0.01-0.20) while TR and PS algorithms perform same for f (r=0.48-0.97) and D (r=0.85-0.99) but remarkably better than LM algorithm for f (r=0.08-0.97) and D (r=0.53-0.99). Overall, TR and PS algorithms demonstrate better but indistinguishable performances. Without requiring any user-given initial value, PS algorithm may facilitate improved estimation of IVIM parameters of the human breast tissue. Further studies are needed to determine its benefit in clinical practice.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"16 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/IJOCTA.01.2019.00642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Intravoxel incoherent motion (IVIM) modeling offers the parameters f, D and D* as biomarkers for different lesion types and cancer stages from diffusion MR signals. Challenges with the available optimization algorithms in fitting the model to the signals motive new studies for improved parameter estimations. In this study, one thousand value sets of f, D, D* for human breast are assembled and used to generate five thousand diffusion MR signals considering noise-free and noisy situations exhibiting signal-to-noise ratios (SNR) of 20, 40, 60 and 80. The estimates of f, D, D* are obtained using Levenberg-Marquardt (LM), trust-region (TR) and particle swarm (PS) algorithms. On average, the algorithms provide the highest fitting performance for the noise-free signals (R2adj=1.000) and great fitting performances on the noisy signals with SNR>20 (R2adj>0.988). TR algorithm performs slightly better for SNR=20 (R2adj=0.947). TR and PS algorithms achieve the highest parameter estimation performance for all the parameters while LM algorithm reveals the highest performance for f and D only on the noise-free signals (r=1.00). For the noisy signals, performances increase while SNR increases. All algorithms accomplish poor performances for D* (r=0.01-0.20) while TR and PS algorithms perform same for f (r=0.48-0.97) and D (r=0.85-0.99) but remarkably better than LM algorithm for f (r=0.08-0.97) and D (r=0.53-0.99). Overall, TR and PS algorithms demonstrate better but indistinguishable performances. Without requiring any user-given initial value, PS algorithm may facilitate improved estimation of IVIM parameters of the human breast tissue. Further studies are needed to determine its benefit in clinical practice.
用粒子群算法拟合乳腺组织弥散MR信号的体素内非相干运动模型
体素内非相干运动(IVIM)模型提供参数f、D和D*作为扩散MR信号中不同病变类型和癌症分期的生物标志物。现有的优化算法在拟合模型与信号方面的挑战促使人们对改进的参数估计进行新的研究。在本研究中,我们对人体乳房的1000个f、D、D*的值集进行了组装,并在考虑无噪声和有噪声的情况下生成5000个扩散MR信号,信噪比分别为20,40,60和80。利用Levenberg-Marquardt (LM)、trust-region (TR)和particle swarm (PS)算法得到f、D、D*的估计。平均而言,算法对无噪声信号(R2adj=1.000)的拟合性能最好,对信噪比>20的有噪声信号(R2adj>0.988)的拟合性能最好。TR算法在信噪比为20时表现稍好(R2adj=0.947)。TR和PS算法对所有参数的参数估计性能最高,而LM算法仅在无噪声信号(r=1.00)上对f和D的参数估计性能最高。对于噪声信号,随着信噪比的增加,性能也随之提高。所有算法对D*的性能均较差(r=0.01-0.20),而TR和PS算法对f (r=0.48-0.97)和D (r=0.85-0.99)的性能相同,但对f (r=0.08-0.97)和D (r=0.53-0.99)的性能明显优于LM算法。总的来说,TR算法和PS算法表现出更好但难以区分的性能。PS算法不需要任何用户给定的初始值,可以改进人体乳腺组织IVIM参数的估计。需要进一步的研究来确定其在临床实践中的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信