Convex Optimization with Abstract Linear Operators

Steven Diamond, Stephen P. Boyd
{"title":"Convex Optimization with Abstract Linear Operators","authors":"Steven Diamond, Stephen P. Boyd","doi":"10.1109/ICCV.2015.84","DOIUrl":null,"url":null,"abstract":"We introduce a convex optimization modeling framework that transforms a convex optimization problem expressed in a form natural and convenient for the user into an equivalent cone program in a way that preserves fast linear transforms in the original problem. By representing linear functions in the transformation process not as matrices, but as graphs that encode composition of abstract linear operators, we arrive at a matrix-free cone program, i.e., one whose data matrix is represented by an abstract linear operator and its adjoint. This cone program can then be solved by a matrix-free cone solver. By combining the matrix-free modeling framework and cone solver, we obtain a general method for efficiently solving convex optimization problems involving fast linear transforms.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"53 1","pages":"675-683"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We introduce a convex optimization modeling framework that transforms a convex optimization problem expressed in a form natural and convenient for the user into an equivalent cone program in a way that preserves fast linear transforms in the original problem. By representing linear functions in the transformation process not as matrices, but as graphs that encode composition of abstract linear operators, we arrive at a matrix-free cone program, i.e., one whose data matrix is represented by an abstract linear operator and its adjoint. This cone program can then be solved by a matrix-free cone solver. By combining the matrix-free modeling framework and cone solver, we obtain a general method for efficiently solving convex optimization problems involving fast linear transforms.
抽象线性算子的凸优化
我们引入了一个凸优化建模框架,该框架将一个以用户自然方便的形式表示的凸优化问题转化为一个等价的锥规划,同时保留了原问题的快速线性变换。通过将变换过程中的线性函数不表示为矩阵,而是表示为编码抽象线性算子组合的图,我们得到了一个无矩阵锥规划,即其数据矩阵由抽象线性算子及其伴随算子表示。这个锥体程序可以用无矩阵锥体求解器来求解。将无矩阵建模框架与锥求解器相结合,得到了一种求解快速线性变换凸优化问题的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信